

IEPA EXHIBIT No. 2

ILLINOIS POLLUTION CONTROL BOARD March 18, 2010

AMEREN ENERGY GENERATING CO.,)	
Petitioner,))	
V.)	PCB 09-38 (Thermal Demonstration-Water)
ILLINOIS ENVIRONMENTAL)	(Thermai Demonstration- water)
PROTECTION AGENCY,)	
D)	
Respondent.)	

AMY ANTONIOLLI, DAVID M. LORING, and GABRIEL M. RODRIQUEZ, SCHIFF HARDEN, LLP, APPPEARED ON BEHALF OF PETITIONER; and

DEBORAH J. WILLIAMS and JOEY LOGAN-WILKEY APPEARED ON BEHALF OF THE ILLINOIS ENVIRONMENTAL PROTECTION AGENCY.

OPINION AND ORDER OF THE BOARD (by A.S. Moore):

On December 15, 2008, Ameren Energy Generating Company (Ameren) filed a petition (Pet.) to modify the site specific thermal standards previously granted¹ by the Board pursuant to 35 Ill. Adm. Code 302.211(j)(5). The thermal standards apply to heated effluent discharge from Ameren's Coffeen Power Station in Montgomery County to the manmade, artificial cooling lake known as Coffeen Lake. Coffeen Lake was formed by damming the McDavid Branch of the East Fork of Shoal Creek approximately two miles directly south of the Village of Coffeen. With a watershed area of approximately 18 square miles, the lake discharges over a spillway to the East Fork of Shoal Creek.

Ameren asserts that compliance with the existing standards is technically infeasible or unreasonably cost-prohibitive. Pet. at 5. Ameren reports that such continued compliance would require additional expenditures of \$13 million-\$18 million for additional cooling towers or continued costly reduction of power generation during periods of warm weather.

¹ As outlined in the petition (Pet. at 2-4), in 1977 and 1982 the Board initially established site specific standards for Coffeen Lake upon petition by the Coffeen Power Station's then-owner and operator under 35 Ill. Adm. Code 302.211(j)(5). <u>CIPS v.. IEPA</u>, PCB 77-158, PCB 78-100 (cons.)(Mar. 19, 1982). CIPS sought and obtained relief from the original May and October thermal limits by way of variance. <u>CIPS (Coffeen Power Station) v. IEPA</u>, PCB 97-131 (June 5, 1997). A condition of the variance required CIPS to conduct studies and collect data regarding the effect of the Station's discharges on the lake's fishery, resulting in variance termination in 1999 after a fish kill. Southern Illinois University-Carbondale (SIUC) fishery studies from 1997-2006 were provided in support of the current petition. Pet. Exh. 11.

Ameren therefore seeks an increase in thermal limits applicable during the calendar months of May and October.² Ameren has presented evidence and argument that the modification meets the standards of 35 Ill. Adm. Code 302.211(j)(5), and the intent of the Environmental Protection Act (Act) 415 ILCS 5/100 *et seq*.

On April 24, 2009, the Illinois Environmental Protection Agency (Agency) filed a recommendation (Rec.) that the Board deny Ameren's petition. The Agency argues that Ameren has failed to demonstrate that the proposed modification is environmentally acceptable and within the intent of the Act and has failed to demonstrate that the alternatives to the proposed modification to the thermal standard are technically infeasible and economically unreasonable. In particular, the Agency expressed concerns regarding (1) temperature and dissolved oxygen in Coffeen Lake, (2) total phosphorus and mercury levels in Coffeen Lake, and (3) lake habitat erosion³. Rec. at 1. The Agency did, however, suggest that the Board impose certain conditions if the Board were to grant the requested modification.

1) Exceeds 105 degrees F as a monthly average from June through September, and 112 degrees F as a maximum for more than 3 % of hours during that same period, and

2) Exceeds 89 degrees F as a monthly average from October through May, and 94 degrees F as a maximum for more than 2 % of hours during that same period.

Ameren proposes a three-condition limit as follows (note slight change in #2 from above, and new #3):

1) Exceeds 105 degrees F as a monthly average from June through September, and 112 degrees F as a maximum for more than 3 % of hours during that same period, and

2) Exceeds 89 degrees F as a monthly average from November through April, and 94 degrees F as a maximum for more than 2 % of hours during that same period.

3) Exceeds 96 degrees F as a monthly average, in each of the months of May and October, and 102 degrees F as a maximum for more than 2% of hours in each of those same months. Pet at. 5-6.

³ Eroded fish habitats or "habitat erosion" is a phenomenon described the 2007 SIUC Report as follows:

Water currents associated with power-cooling discharges cause the biota behavior to be more characteristic of slow-moving rivers than of reservoirs. As a result, fish movement increases over that of ambient reservoirs. The movement is, in large part, dictated by forage abundance and locality. In power-cooling

 $^{^2}$ The current, two-condition thermal discharge temperature limits applicable to the Station provide that discharges shall not result in a temperature, as measured at the outside edge of the mixing zone of Coffeen Lake, which

The Board held a hearing⁴ in Montgomery County on June 23, 2009. Ameren presented four expert witnesses in support of its petition. The Agency presented no witnesses. Two members of the public presented oral public comment at hearing, and followed their hearing presentations up with written comments. Two additional persons filed written comment, so that the Board considered four public comments. In addition to echoing the Agency's concerns, the public commenters expressed concerns, among others, about the effect on Coffeen Lake's watershed of planned longwall mining at Deer Run Mine, which includes a planned subsidence of the McDavid Branch of the East Fork of Shoal Creek. Tr. 249-253, PC 1-4.⁵

The record in this proceeding is extensive and rich in information, reflecting as it does studies conducted over three decades by various environmental consultants and eminent Illinois institutions documenting the effects of Coffeen's thermal discharges on the Coffeen Lake fish habitat. Ameren has provided additional information throughout this proceeding in response to questions posed by the Board, as well as concerns expressed by the Agency and commenters. Ameren's position as to agreeable conditions has evolved in response to the various questions and suggestions it has received.

Based on the record in this proceeding, the Board finds that Ameren has provided adequate proof to demonstrate that the proposed modification satisfies the requirements of the Act and Board rules. The Board finds that the site specific thermal standard for the discharge to the Coffeen Lake will be environmentally acceptable and within the intent of the Act. Even under the modified standards, the Board finds Lake Coffeen will continue to provide conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices. The Board further finds that Ameren has invested \$26.7 million since 2000 to enhance thermal controls, and will control the thermal component of its effluent by technologically feasible and economically reasonable methods, including use of existing cooling towers and reduced power generation or "de-rating"⁶, when necessary. 35 Ill. Adm. Code 106.202(b)(1) and 302.211(j)(3).

reservoirs, forage species often inhabits water temperatures near their thermal maximums because the food supply is more abundant there. If a sudden pulse of lethally hot water is pulsed through and some fish happen to be located in a cove away from the main water flow, the fish can be forced to stay in the cove until the slug of hot water passes. If lethally hot water temperatures persist in the main channel long enough, water temperatures in the coves will increase until they are similar to those in the main channel. This phenomenon, described as eroded fish habitats, results in smaller but more frequent fish kills. .Ag. Exh. 1 at 10.

⁴ The transcript of the June 23, 2009 hearing is cited as "Tr."

⁵ The oral and written public comments are treated in more detail later in this opinion. See, *infra*, at 28-29, 42-43.

⁶ "De-rating" refers to adjusting an electrical generating unit down from full load and operating at less than full capacity. Tr. at 58-59.

The Board does not discount the depth of the concerns expressed by the public commenters who value Lake Coffeen for the fishing and other recreational opportunities this manmade lake offers. But, the Board believes that the record as a whole justifies the requested modification.

Accordingly, the Board grants Ameren's petition for modified site-specific thermal standards subject to conditions outlined in this opinion and order.

In this opinion, the Board first sets forth the legal framework within which the Board determines whether to issue site specific thermal standards pursuant to 35 Ill. Adm. Code $106.200 \ et \ seq$. and 35 Ill. Adm. Code 302.211(j)(5). Next, the Board provides the procedural history, and the factual background of the case. The Board then describes the petitioners' requested relief. The Board then presents the parties' arguments, and responses to expressed concerns. This examination is followed by the Board's discussion of the regulatory criteria before reaching its conclusions on each of them.

LEGAL FRAMEWORK

Federal Requirements

The federal Clean Water Act (CWA) imposes requirements on state permitting authorities for control of thermal discharges. Section 301 of the CWA, 33 U.S.C. 1311, provides that permits issued under the National Pollutant Discharge Elimination System (NPDES) program must include any applicable state standard. Section 402 of the CWA, 33 U.S.C. 1342, requires thermal discharges to be permitted under the NPDES procedures.

Under Section 316(a) of the CWA, the Board can establish alternative thermal standards based on a demonstration that the alternative standard will "assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on that body of water." 33 U.S.C. 1326(a) provides

With respect to any point source otherwise subject to the provisions of section 301 or section 306 of this Act, whenever the owner or operator of any such source, after opportunity for public hearing, can demonstrate to the satisfaction of the Administrator (or, if appropriate, the State) that any effluent limitation proposed for the control of the thermal component of any discharge from such source will require effluent limitations more stringent than necessary to assure the protection and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in and on the body of water into which the discharge is to be made, the Administrator (or, if appropriate, the State) may impose an effluent limitation under such sections for such plant, with respect to the thermal component of such discharge (taking into account the interaction of such thermal component with

other pollutants), that will assure the protection and propagation of a balanced, indigenous population of shellfish, fish, and wildlife in and on that body of water. 33 U.S.C. 1326(a).

United States Environmental Protection Agency (USEPA) rules implementing Section 316 are codified at 40 CFR 125 Subpart H. 40 CFR Section 125.73 provides:

Thermal discharge effluent limitations or standards established in permits may be less stringent than those required by applicable standards and limitations if the discharger demonstrates to the satisfaction of the [permitting authority] that such effluent limitations are more stringent than necessary to assure the protection and propagation of a balanced, indigenous community of shellfish, fish, and wildlife in and on the body of water into which the discharge is made. 40 CFR 125.73(a).

The current guidance provided by USEPA on CWA Section 316(a) demonstrations is the "Interagency 316(a) Technical Guidance Manual and Guide for Thermal Effects Sections of Nuclear Facilities Environmental Impact Statements (DRAFT)", May 1, 1977, hereafter cited as "Section 316(a) Manual at ___." The Section 316(a) Manual is available at: <u>http://www.epa.gov/npdespub/pubs/owm0001.pdf</u> The Section 316(a) Manual itself states that "The manual is intended to be used as a general guidance and as a starting point for discussions", and that State Directors "are not rigidly bound by the contents of this document." Section 316(a) Manual at 8-9, Pet. Br. at 2.

The Section 316(a) Manual indicates that "predictive studies" are appropriate for new sources, facilities discharging only for an evaluation period, facilities discharging into waters that were previously despoiled, and facilities making major operational changes. Section 316(a) Manual at 11.

The federal regulations at 40 CFR 122 provide for two possible types of predictive 316(a) demonstrations, Type II: Protection of Representative Important Species and Type III: Alternative Demonstrations. The Section 316(a) Manual states that a Type II Demonstration should fully develop three key biological components: completion of the Biotic Category Rationale (begun during early screening procedures), development of Representative Important Species (RIS) Rationale, and synthesize of all information into a Master Rationale. Section 316(a) Manual at 34.

Current Standards Applicable to Lake Coffeen

Section 13 of the Act authorizes the Board to adopt water quality and effluent standards, including thermal standards. 415 ILCS 5/13 (2008). The Board's generally applicable water quality temperature standards are found at 302.211.⁷

- a) Temperature has STORET number (F°) 00011 and (C°) 00010.
- b) There shall be no abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.

⁷ 35 Ill. Adm. Code 302.211 provides:

As noted earlier, the current specific thermal standard applicable to Coffeen Lake was established by the Board in 1982 for Central Illinois Public Service Company (CIPS), the station's owner and operator at the time. Pet. at 2, referring to <u>CIPS v. IEPA</u>, PCB 77-158, PCB 78-100 (consolidated) (March 18, 1982). The current standard provides:

The thermal discharge to Coffeen Lake from the Central Illinois Public Service Company's Coffeen Power Station shall not result in a temperature, measured at the outside edge of the mixing zone in Coffeen Lake, which:

- 1. Exceeds 105 degrees Fahrenheit as a monthly average, from June through September, and 112 degrees Fahrenheit as a maximum for more than three percent of the hours during that same period.
- 2. Exceeds 89 degrees Fahrenheit as a monthly average, from October through May, and 94 degrees Fahrenheit as a maximum for more than two percent of the hours during that same period. Pet. at 2.

The language of the specific thermal standard for Coffeen Lake was incorporated into Ameren's current NPDES permit as Special Condition No. 5. Pet. at 2.

- c) The normal daily and seasonal temperature fluctuations which existed before the addition of heat due to other than natural causes shall be maintained.
- d) The maximum temperature rise above natural temperatures shall not exceed 2.8° C (5° F).
- e) In addition, the water temperature at representative locations in the main river shall not exceed the maximum limits in the following table during more than one percent of the hours in the 12-month period ending with any month. Moreover, at no time shall the water temperature at such locations exceed the maximum limits in the following table by more than 1.7° C (3° F).

	° C	° F		° C	° F
JAN.	16	60	JUL.	32	90
FEB.	16	60	AUG.	32	90
MAR.	16	60	SEPT,	32	90
APR.	32	90	OCT.	32	90
MAY	32	90	NOV.	32	90
JUNE	32	90	DEC.	16	60

Requirements and Standard for Decision in Artificial Cooling Lake Demonstrations

The Board regulations at 35 Ill. Adm. Code 302.211 (j)(5) and (j)(3) set forth requirements for the adoption of site specific thermal standards for discharges to an "artificial cooling lake" (ACL)⁸, such as the Coffeen Lake. These are consistent with the requirements of Section 316(a) of the CWA.⁹

Section 302.211(j)(5) provides that "if an adequate showing as provided in subsection (j)(3) is found, the Board shall promulgate specific thermal standards to be applied to that discharge to that artificial cooling lake." 35 Ill. Adm. Code 302.211(j)(5). The requirements for the ACL demonstration are set forth at 35 Ill. Adm. Code 302.211(j)(3), (j)(4), and (j)(5) as follows:

- 3) At an adjudicative hearing the discharger shall satisfactorily demonstrate to the Board that the artificial cooling lake receiving the heated effluent will be environmentally acceptable, and within the intent of the Act, including, but not limited to:
 - A) provision of conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices, and
 - B) control of the thermal component of the discharger's effluent by a technologically feasible and economically reasonable method.
- 4) The required showing in subsection (j)(3) may take the form of an acceptable final environmental impact statement or pertinent provisions of environmental assessments used in the preparation of the final environmental impact statement, or may take the form of showing pursuant to Section 316(a) of the Clean Water Act (CWA) (33 U.S.C. 1251 et seq.), which addresses the requirements of subsection (j)(3).

⁸ By Board rule, an "artificial cooling lake" is defined as:

Any manmade lake, reservoir, or other impoundment, constructed by damming The flow of a stream, which is used to cool the water discharged from the condensers of a steam-electric generating plant for recirculation in substantial part to the condensers. 35 Ill. Adm. Code 301.225.

⁹ Section 316(a) of the CWA and 40 CFR 125 Subpart H address alternate thermal limitations in terms of effluent standards. Although the Board's rule for ACL demonstrations provides for the use of a Section 316(a) showing, the demonstration required under the Board's Section 302.211(j)(3) is for water quality standards that apply at the outside edge of the mixing zone in the artificial cooling lake and not as effluent limits.

5) If an adequate showing as provided in subsection (j)(3) is found, the Board shall promulgate specific thermal standards to be applied to the discharge to that artificial cooling Lake. 35 Ill. Adm. Code 106.202(b).

Additionally, the Board has adopted procedural rules pertaining to ACL demonstration required under Section 302.211(j)(3) at 35 Ill. Adm. Code 106.200 *et seq*. These rules set forth requirements for the petition content, Agency recommendation, and burden of proof. The burden of proof in thermal demonstration proceedings is on the petitioner. 35 Ill. Adm. Code 206.210.

PROCEDURAL BACKGROUND

On December 15, 2008, Ameren filed this petition for the modification of site specific thermal standard applicable to discharges to Coffeen Lake. The petition was accompanied by Exhibits 1-16, a motion for expedited review, and a waiver of hearing.

On March 5, 2009, the Board accepted the petition for hearing, and denied Ameren's motion for expedited review. While Ameren waived hearing, the Board found that hearing is required under the terms of 35 Ill. Adm. Code 302.211(j)(3). Also on March 5, 2009, the Board's Hearing Officer Carol Webb directed Ameren to address prehearing questions posed by Board staff.

On April 7, 2009, the Agency filed a motion for extension of time to file the recommendation. On April 8, 2009, the Hearing Officer granted the motion for extension subject to Ameren's request that the recommendation be filed by April 17, 2009. On April 27, 2009, the Agency filed its recommendation that the Board deny Ameren's requested relief and a motion for leave to file *instanter*, which is hereby granted.

On May 6, 2009, the Hearing Officer granted Ameren until May 12, 2009 to respond to the Agency's recommendation as requested by the petitioner. On May 12, 2009, Ameren filed its response to the Agency's recommendation (Pet. Resp. to Rec.), answers to the Hearing Officer's prehearing questions (Pet. Resp. to HOO), and the prefiled testimony of Ann B. Shortelle, Ph.D., James R. McLaren, Ph.D., and James L. Williams, Jr.

Pursuant to notice duly given¹⁰, on June 23, 2009, Hearing Officer Carol Webb conducted a hearing in this matter at the City Hall Council Chambers, 120 East Ryder Street, Litchfield, Montgomery County. Four witnesses testified at hearing on behalf of Ameren: James B. McLaren, Ph.D with ASA Analysis & Communication, Inc. (ASA), Anne Shortelle, Ph.D. with MACTEC Engineering & Consulting, Inc. (MACTEC), James L. Williams, Jr. with Ameren, and Michael Smallwood with Ameren. Hearing Officer Webb found all four witnesses credible. The Agency did not present any witnesses, although it did introduce one exhibit.

¹⁰ The Board published newspaper notice of hearing notice of the hearing in the *Litchfield News-Herald* on May 20, 2009.

On July 10, Ameren filed a response to information requested during the hearing. (Pet. Resp. to Hearing).

On July 13, the Agency filed a motion to supplement the record with SIUC Reports from 2000 to 2005. This motion was granted by the Hearing Officer on August 5, 2009.

On July 16, 2009, Ameren filed a supplemental response to its earlier response to information requested during the hearing. (Pet. Supp. Resp. to Hearing)

On July 22, 2009, the Agency filed a motion to correct the transcript of the June 23, 2009 hearing. Ameren did not object. The Hearing Officer granted the Agency's motion to correct the transcript on August 5, 2009.

On August 13, 2009, Ameren filed its Post Hearing Brief. (Pet. Br.) On September 16, 2009, the Agency filed its Post Hearing Brief. (Ag. Br.) On September 28, 2009, Ameren filed a Post Hearing Reply Brief. (Pet. Reply Br.)

Finally, the Board received four Public Comments: Mary Bates (PC #1), Prairie Rivers Network (PC #2), Joyce Blumenshine (PC #3), and Mary Ellen DeClue (PC #4).

FACTUAL BACKGROUND

The Facility

Ameren operates the Coffeen Power Station (Coffeen or Station), which is a two-unit 950 megawatt (MW) coal-fired electrical generating station employing 400 people. The Station is located on 3200 acres approximately two miles southwest of Coffeen, Montgomery County. Approximately 1100 acres of the property is dedicated to the Station's artificial cooling lake, Coffeen Lake. Pet. at 6.

From an historical perspective, planning for the Coffeen Power Station began in 1958 and construction began in 1962 after the Illinois Commerce Commission granted Central Illinois Power Service (CIPS) a Certificate of Public Convenience and Necessity. In 1963, Coffeen Lake was created as an artificial impoundment to provide a source for the Station's once-through cooling water. Pet. at 7. Unit No. 1 went into service in 1965 and Unit No. 2 in 1972, providing 360 MW and 590 MW of electrical generating capacity, respectively. Pet. at 7. On May 1, 2000, CIPS transferred the ownership of its coal-fired generating stations, including the Coffeen Power Station to Ameren.¹¹ Pet. at 1.

Coffeen Lake as a Cooling Water Resource

¹¹ In March 2000, Ameren Energy Generating Company was incorporated in Illinois in conjunction with the Illinois Electric Service Customer Choice and Rate Relief Law of 1997. CIPS continues to own and operate electric and gas distribution utility services in central Illinois. Both CIPS and Ameren are subsidiaries of Ameren Corporation. Pet. at 1.

Coffeen Lake was created in 1963 as an artificial impoundment to provide a source for the Station's once-through cooling water. Pet. at 7. Ameren explains that Coffeen Lake was formed by damming the McDavid Branch of the East Fork of Shoal Creek approximately two miles directly south of the Village of Coffeen. With a watershed area of approximately 18 square miles, the lake discharges over a spillway to the East Fork of Shoal Creek. According to Ameren, Coffeen Lake experiences extended periods of low water levels. Ameren states that , "[s]everal months often lapse without a discharge over the spillway. Prior to an overflow on April 11, 2008, the lake had not discharged to the East Fork of Shoal Creek since May 2005." Pet. Exh. 10 at 2.

The Station obtains cooling water from the western arm of the lake. The cooling water passes through condensers to dissipate waste heat from both Units 1 and 2 at the Station and is then discharged back into the eastern arm of Coffeen Lake. Pet. at 11-12. Ameren indicates the path of cooling water from discharge to intake is 4.1 miles, taking 7 to 10 days to complete, depending on the number of pumps operating and the lake level. Pet. at 12.

Coffeen Lake as a Recreational Resource

Ameren states that although Coffeen Lake was created to provide cooling water to the Station, the lake has also become a resource for recreational fishing, boating, camping, hunting, and trapping. Pet. at 7. In 1986, Ameren recounts that CIPS and the Illinois Department of Conservation (now known as the Illinois Department of Natural Resources (IDNR)) entered into a Lease Agreement allowing for conservation and public recreation in certain portions of Coffeen Lake and the surrounding property. Under the Lease Agreement, the parties recognized the need to restrict and regulate public use to avoid conflict with the then current and future operation of the Station. At the time, CIPS and the Department of Conservation developed a "Site Development Management Plan" that set aside certain recreational areas for public fishing and boating. *Id.* Since September 1999, Ameren states that hunting and trapping have also been allowed. Also in 1986, a Sublease Agreement between CIPS and the Department of Conservation on the west side property of Coffeen Lake. Pet. at 8.

Thermal Control Equipment In Use

As previously stated, Ameren's discharges are governed by NPDES Permit IL 0000108, which includes the current thermal standards as Special Condition No. 5. Pet. at 2, Pet. Exh.1.

Since 2000, Ameren has undertaken capital projects to enhance cooling capacity. In 2000, Ameren developed a 70-acre supplemental cooling basin at a cost of \$20,734,000. In 2002, Ameren installed a 48-cell helper cooling tower structure at a cost of \$6,833,000. Pet. at 12. Ameren states that both the supplemental basin and cooling tower structure are used to condition the circulating water temperature to meet the mixing zone limits. *Id.* In 2007, Ameren experimented with solar-powered aerators ("solar bees") to stimulate circulation of water from lower depths to the surface. Pet. at 27. These aerators, which are still in operation today, were installed at a capital cost of \$120,000. *Id.*

Other Environmental Projects at the Station

The Station has the ability to utilize both Illinois basin coal and western Powder River Basin (PRB) coal. In order to burn Illinois coal, Ameren states that significant environmental projects are planned for construction at the station over the next three years.

Ameren recently installed selective catalytic reduction (SCR) on both units at the Station to remove NO_x (nitrogen oxides), investing approximately \$100 million in capital costs. Currently, Ameren is installing flue gas desulphurization (FGD) systems to remove SO₂ (sulfur dioxide) with an investment of over \$600 million in capital. Tr. at 18. Ameren states that SO₂ scrubbers will be in place by the end of 2009, which will operate throughout the year to also reduce mercury emissions. Pet. Br. at 31.

History of Thermal Standards at Coffeen Lake

In 1978 and 1982, the Board granted alternative thermal standards for the Coffeen artificial cooling lake when it was under the ownership of CIPS in PCB 77-158, PCB 78-100 (cons.). Later in 1997, CIPS identified the need for a variance (PCB 97-131) when Coffeen adjusted its maintenance schedule to reduce costs. Historically, CIPS was able to meet the applicable thermal standards during May and October because either one or the other of the units at Coffeen were scheduled for extended annual maintenance outages during either May or October.

In the 1980s, CIPS converted from a twelve- to an eighteen-month maintenance schedule to reduce costs. The change to the maintenance schedule no longer provided a reduction in heat loading for the months of May and October. PCB 97-131, slip op. at 2 (June 5, 1997). The Board granted CIPS the 5-year thermal variance for the months of May and October, allowing higher temperatures than requested in the instant petition. CIPS expected to return to the Board 3 years later for permanent relief, however, the variance was suspended after 2 years when a fish kill occurred during July 1999. At that time, the thermal standards for May and October reverted to the previous limits under PCB 77-158/PCB 78-100, and Coffeen has relied on operational constraints and additional cooling capacity to reduce effluent temperatures since then. Pet. Exh. 11 at 1-2.

Continuing Compliance Issues at Lake Coffeen

Ameren states that to meet the current standards during times of hot, dry weather conditions and low lake levels, Ameren has scheduled planned outages and extended forced outages. Pet. at 4. Despite the enhancements that were made to the cooling system since 2000 (70-acre supplemental cooling basin and helper cooling towers), Ameren contends that the Station continues to experience loss in generation capacity during high station power output and hot weather, specifically in May and October. Pet. Exh. 15 at 5. Ameren states that at times of unseasonal warm temperatures and lack of rain, the lake level has been down by 8-10 feet. Tr. at 15, Pet. Exh.10 at 2. In order to comply with the current standards, Ameren has resorted to derating the Coffeen Power station in past years, resulting in a financial loss of over \$5 million since 1999. Ameren is forecasting an increase in generation within the next few years from 950

MW to 1026 MW. Ameren estimates capital costs for additional cooling capacity would range from \$13,053,000 to \$18,266,000. Exh. 15 at 13. Ameren seeks to modify its current thermal standards for the months of May and October only.

AMEREN'S PROPOSED THERMAL STANDARDS

In the original petition, Ameren proposed the following alternative thermal standards for adoption by the Board based on the limits derived by Sargent & Lundy. Sargent and Lundy was commissioned by Ameren to assess engineering alternatives to meet the current thermal limits based on both current Station capacity as well as forecasted increases in future capacity. Pet. at. 6, Exh. 15 at 12.

The thermal discharge to Coffeen Lake from Ameren's Coffeen Power Station shall not result in a temperature, measured at the outside edge of the mixing zone in Coffeen lake, which:

- 1. Exceeds 105 degrees Fahrenheit as a monthly average, from June through September, and 112 degrees Fahrenheit as a maximum for more than three percent of the hours during that same period.
- 2. Exceeds 89 degrees Fahrenheit as a monthly average, from November through April, and 94 degrees Fahrenheit as a maximum for more than two percent of the hours during that same period.
- 3. Exceeds 96 degrees Fahrenheit as a monthly average, in each of the months of May and October, and 102 degrees Fahrenheit as a maximum for more than two percent of the hours in each of those same months. Pet. at 6.

In Ameren's post hearing brief, Ameren modified the above language to incorporate an agreement between Ameren and the Illinois Department of Natural Resources. Ameren clarifies that the proposed thermal limits apply to the near-surface temperatures at the boundary of the 26-acre mixing zone, as follows: Pet. Br. at 15.

- (A) The thermal discharge to Coffeen Lake from Ameren Energy Generating Company's Coffeen Power Station shall not result in a temperature, measured at the outside edge of the mixing zone in Coffeen Lake, which:
 - 1. Exceeds 105 degrees Fahrenheit as a monthly average, from June through September, and 112 degrees Fahrenheit as a maximum for more than three percent of the hours during that same period.
 - 2. Exceeds 89 degrees Fahrenheit as a monthly average, from November through April, and 94 degrees Fahrenheit as a maximum for more than two percent of the hours during that same period.

- 3. Exceeds 96 degrees Fahrenheit as a monthly average, in each of the months of May and October, and 102 degrees Fahrenheit as a maximum for more than two percent of the hours in each of those same months.
- (B) Ameren and IDNR will monitor Coffeen Lake during the period May through October for fish mortality. In the event excessive fish mortality occurs during these months, Ameren shall implement appropriate mitigation measures including the following:
 - 1. Immediately notify the IDNR;
 - 2. Maximize operation of the cooling basin and existing cooling towers to reduce thermal temperatures;
 - 3. Make operation revisions to the station's typical dispatch order (e.g. "last on and first off");
 - 4. Reduce nighttime capacity factors;
 - 5. Monitor intake and discharge temperatures and visually inspect intake and discharge areas; and
 - 6. No later than November 15 of each year, document mitigation measures employed during periods of excessive fish mortality.

Pet. Br. at 37-38.

In addition, Ameren stated if the requested relief is granted, Ameren and IDNR have agreed to a draft Memorandum of Understanding (MOU) to conduct additional studies on Coffeen Lake and the fishery. Resp. to Hearing at 5. The draft MOU includes provisions for: (1) Fish Population and Behavior Status Monitoring Studies, (2) Fish Stocking Pilot Study, (3) Annual Summary Data Report, (4) Corrective Action – Fish Mortality. Pet. Resp. to Hearing, Exh. C.

While the Agency's recommends that the Board deny Ameren's petition, the Agency suggests that if relief is granted to Ameren, conditions should include requirements to demonstrate that the relief will not result in violations of other water quality standards as required by 302.211(j)(2). In particular, the Agency states that Ameren has not been required to monitor discharges *from* Coffeen Lake. Ag. Br. at 7-8.

AMEREN'S PRESENTATION IN SUPPORT OF ITS ACL DEMONSTRATION

<u>Provision of Conditions Capable of Supporting Shellfish, Fish and Wildlife, and</u> <u>Recreational Uses Consistent With Good Management Practices</u> (35 Ill. Adm. Code 106.202(b)(1)(A) & 302.211(j)(3)(A))

Thermal Environment of Coffeen Lake

Ameren states that water temperatures and dissolved oxygen concentrations have been monitored by SIUC since 1997 at various depths and locations within Coffeen Lake. Pet. at 13. According to SIUC, average daily temperatures at the edge of the mixing zone in May and October have been typically 80 to 90°F, exceeding the 96°F limit on occasion, while maximum daily temperatures have not exceeded the 102°F limit during May or October. During July and August, water temperatures at the edge of the mixing zone have occasionally exceeded 100°F following seasonal weather patterns. Temperatures at the plant intake tend to be 10 to 15 degrees cooler than temperatures at the edge of the mixing zone during the period of May through October. Pet. at 13. The SIUC data also show that both temperature and dissolved oxygen in the lake is vertically stratified during the summer months, especially in the deeper parts of the lake. Pet. at 13-14.

Ameren states that Coffeen Lake is capable of supporting shellfish, fish, and wildlife, and recreational uses consistent with good management practices as required by Sections 106.202(b)(1)(A) and 302.211(j)(3)(A). Pet. at 20. Over the past 40 years since the Station has been operating, water temperatures have repeatedly occurred at or above the proposed thermal limits (96°F and 102°F). Despite the occurrence of higher temperatures, Ameren states

Coffeen Lake supports abundant and diverse wildlife, including muskrat, turtles, heron and mussels. It also supports a robust fishery, comprised of 22 species of fish, and is well known as the home of numerous competitive sport-fishing tournaments. *Id.*

ASA Report Generally

Ameren relies on the report by ASA (Pet. Exh. 11) to demonstrate the capability of Coffeen Lake to support shellfish, fish, and wildlife, and recreational uses. Ameren commissioned ASA to evaluate the potential ecological impacts from proposed modifications to the current site specific thermal standards in Coffeen Lake. ASA produced the report entitled, "Evaluation of Potential Adverse Impacts from Revised Site-Specific Thermal Standards in May and October for Coffeen Lake" (ASA Report) dated March 2008. The ASA Report is based on extensive studies of the thermal impacts of the Coffeen Power Station on the biota of Coffeen Lake. *See* Pet. Exh. 11 at 6-1 to 6-6. The ASA Report provides "an overview of the evidence supporting the conclusion that raising the thermal limits for the months of May and October presents minimal additional risk to fish populations in the lake." Pet. Exh. 11 at 1-1.

Dr. McLaren of ASA conducted an exhaustive examination of data collected by SIUC, IDNR, INHS, and Ameren. Pet. Br. at 8. As the most recent source of information, the ASA Report relied on the 1997-2006 studies conducted by SIUC. Pet. Resp. to HOO at 3, Pet. Exh. 11 at 3-1. The SIUC studies were conducted to comply with the conditions of the 5-year variance granted in 1997 in PCB 97-131. *Id.* The SIUC data was supplemented by data collected by IDNR during the same years. Tr. at 27. Dr. McLaren commented that having this amount of long-term data collected is unusual and very fortunate in assessing the effects of the thermal regime on the fish. Tr. at 28.

ASA explains that in an assessment, the general practice is to select only certain species for detailed analysis, which are referred to as "representative important species" (RIS) ¹². RIS are chosen because they "(1) are important because of their societal or ecological value, and (2) can adequately represent other species not studied to the same extent." Pet. Exh. 11 at 3-1. Following the extensive studies conducted during 1978-1981 (Tranquilli and Larimore 1981)¹³ and 1997-1999 (Heidinger et al. 2000)¹⁴, SIUC selected three fish species as RIS to be monitored on an annual basis thereafter for compliance with the 1997 thermal variance: Largemouth Bass, Bluegill, and Channel Catfish. Pet. Exh. 11 at 3-1. IDNR concurred with the selection of the three RIS while approving the studies in 1997. Resp. to HOO at 3-4.

The ASA Report focused on the three RIS selected by SIUC. Pet. at 21-22. Dr. McLaren of ASA explains that these three are appropriate RIS, "because IDNR manages these species and because they are recreationally important species, self-reproducing, and predatory species that reflect the status of lower trophic levels."¹⁵ Tr. at 158, Pet. Exh. 3. Since SIUC focused on these same three species in its multi-year studies, the collective body of research represents a long-term database from which to assess the thermal effects of these species of fish. Pet. Br. at 9.

Although Ameren lists white crappie among the game species present in Coffeen Lake, white crappie was not selected as a RIS because only a couple were caught during the study. In addition, while the other three RIS populations are sustained entirely by natural reproduction, the white crappie has typically only been stocked. Pet. Resp. to HOO at 4.

The ASA Report notes that the effects of the proposed thermal standards on fish populations in Coffeen Lake were evaluated using two types of assessments: (1) a "retrospective" assessment that examines past studies on Coffeen Lake, and (2) a "prospective" assessment that predicts how the lake's thermal environment might be altered under the proposed revised standards and how the fish might adapt. Pet. Exh. 11 at 1-2. These assessments are described below.

- ¹⁴ Heidinger, R., R. Sheehan, and R. Brooks (eds.). 2000. Ameren/CIPS Newton and Coffeen Lakes Research and Monitoring Project Status Report. Fisheries & Illinois Aquaculture Center, Southern Illinois University at Carbondale. November 2000.
- ¹⁵ Trophic Level: "A feeding stratum in a food chain of an ecosystem characterized by organisms that occupy a similar functional position in the ecosystem." The American Heritage Dictionary. Second College Edition. 1982.

¹² Representative, Important Species (RIS) is defined in the USEPA "Interagency 316(a) Technical Guidance Manual and Guide for Thermal Effects Sections of Nuclear Facilities Environmental Impact Statements" (May 1, 1977) at page 78-79.

¹³ Tranquilli, J.A. and R.W. Larimore (eds). 1981. Final report to Central Illinois Public Service Company. Part I: Environmental studies of Coffeen Lake, a thermally-altered reservoir. INHS, Urbana, Illinois. July 1981.

ASA's Retrospective Assessment

In the "Retrospective Assessment", ASA examined data collected from 1997 to 2006 by IDNR, SIUC, and Coffeen Station. ASA explains the retrospective assessment is presented "to evaluate how the populations have adapted to the recent thermal environment in the lake." Pet. Exh. 11 at 1-3. In many respects,

A retrospective assessment provides the strongest evidence of the long-term effects of periodically higher water temperatures in that it integrates all aspects of the thermal environment on the life cycle for the fish species and the lower trophic levels in the lake, such as phytoplankton, epiphyton, macrophhytes, zooplankton, and benthos. *Id.* at 3-1.

At hearing, Dr. McLaren further explained,

We found that the survival and growth of the early life stages, the eggs and the larvae, particularly for largemouth bass, apparently are improved by the stable warmer temperatures that occur in the late winter and early spring, and are improved by the prolonged growth season that results from the thermal discharge to the lake." Tr. at 30.

Largemouth Bass. For largemouth bass, the ASA Report states, "the fishery for it is considered to be exceptional." Pet. Exh. 11 at 3-2. The ASA Report cites to evidence that spawning of largemouth bass occurs earlier in Coffeen Lake than in other regional lakes. In terms of recruitment, the ASA report states, "Earlier spawning can impart benefits that last throughout the first year of life." Pet. Exh. 11 at 3-3. Based on several historical studies, ASA concludes, "it is apparent that elevated water temperatures in Coffeen Lake should benefit the largemouth bass population overall in terms of reproduction, growth, and survival." Pet. Exh. 11 at 3-4.

Bluegill. The ASA Report observed a prolonged spawning season in Coffeen Lake for bluegill, from April to October in the eastern arm of the lake and May to October in the western arm. Pet. Exh. 11 at 3-6, 3-7. However, the ASA Report states, "The influence of water temperatures on bluegill growth in Coffeen Lake is unclear." Pet. Exh. 11 at 3-7. During the five-year period from 1999-2003, within the range of temperatures experienced in Coffeen Lake, "the thermal environment appeared to have no effect on the first year growth rates." Pet. Exh. 11 at 3-7. The ASA Report goes on to state, "There is evidence that competition for food is limiting growth of bluegills in Coffeen Lake, resulting in a stunted population." Pet. Exh. 11 at 3-7. This competition appears to be related to the increasing survival of other small fish (sunfish, gizzard shad, and threadfin shad). The ASA Report attributes the increasing survival to the abundance of submerged macrophytes¹⁶ in Coffeen Lake that provides refuge from predation for these smaller fish. *Id*.

¹⁶ Macrophyte: "A macroscopic plant in an aquatic environment." The American Heritage Dictionary. Second College Edition. 1982.

<u>Channel catfish</u>. ASA Report notes that the 2001 creel survey by the INHS indicated that channel catfish is the most frequently harvested fish species in Coffeen Lake. As to the effect of temperature, the ASA Report concluded that the "annual changes in the thermal environment had no effect on the condition of channel catfish in Coffeen Lake." Pet. Exh. 11 at 3-8. The ASA Report observes, "The length at age for channel catfish in Coffeen Lake falls within the range of values for other channel catfish populations studied in rivers, lakes, and other reservoirs in the Midwest or South…" Pet. Exh. 11 at 3-8.

ASA's Prospective (Predictive) Assessment

The ASA Report (Exh. 11) also contains a "Prospective Assessment" where ASA predicts how the proposed standards might alter the thermal environment of the lake during the months of May and October. Pet. Exh. 11 at ES-1. ASA assessed the thermal tolerances and requirements of the three RIS (largemouth bass, bluegill, and channel catfish) in relation to the proposed thermal standards for May and October. Pet. at 24. ASA points out that the proposed thermal limits would apply to near-surface water temperatures at the edge of the mixing zone. These temperatures represent the warmest temperatures to which fish and other organisms would be exposed outside the mixing zone. Even when temperatures approach the thermal limits of 96°F and 102°F, ASA observes that at other locations in the lake and at greater depths, the water temperatures would be in the 80s (°F) or lower, "well within the range of temperatures tolerated by RIS life stages..." Pet. Exh. 11 at 4-1, Pet. Br. at 16. Dr. McLaren testified, "Diversity in water temperatures exist in the eastern and western arms of Coffeen Lake, and at depth, providing adequate refuge; such temperature diversity would be advantageous to all fish species." Hearing Exh. 2 at 10. Further, the ASA report states that the results of electrofishing conducted in August 1995 indicate that juvenile and adult fish will avoid the highest temperatures in or near the thermal plume in the eastern arm of the lake and move away from the discharge areas. Pet. Exh. 11 at 4-1 - 4-2.

ASA also used the results of the thermal modeling conducted by Sargent & Lundy, LLC to show that warmer May temperatures do not necessarily result in a carryover effect in later months. Pet. at 25, Pet. Exh. 11 at 5-1. ASA used the concept of "degree days" ¹⁷ to "reflect longer term, cumulative effects of temperatures." Pet. at 14, Exh. 11 at 2-4. Based on the ASA Report, Ameren states, "[T]he SIUC data indicate that raising water temperature in the mixing zone during May via higher thermal limits will not necessarily result in warmer temperatures throughout the remainder of the summer." Pet. at 14. ASA found, "the meteorological conditions are the controlling factors of the temperature… The lake dissipates heat through

Monthly and seasonal degree-days were determined by computing the difference between mean daily temperatures and 60°F (15.6°C) and summing these differences over the desired period of time, i.e., individual month or season (*e.g.*, May-October). A threshold temperature of 60°F was chosen because it represents the minimum temperature for largemouth bass spawning (Heidinger 1975) and a reasonable, if not conservative, lower limit for growth." Pet. Exh. 11 at 2-4.

¹⁷ The ASA Report explained:

surface exchange with the atmosphere. That's influenced by ambient air temperatures, relative humidity, wind and wave reaction and solar radiation." Tr. at 32.

In summary, the ASA Report states that the proposed standards for the transition months of May and October "would more realistically reflect a natural thermal environment, where temperatures increases or decreases occur more gradually than the abrupt change inherent in the existing site-specific standards." Pet. Exh. 11 at 5-1. With the current thermal standards, Dr. McLaren explained, "There can be a very rapid increase in the water temperature at the end of May when you transition from the non-summer to the summer limits. And this can be a very stressful thing, and it certainly is not a natural situation." Tr. at 37. Dr. McLaren added that a more gradual shift in temperature provides more opportunity for fish to acclimate and move to areas with more suitable temperatures. Tr. at 196-197, Pet. Br. at 15.

ASA maintains that the warmer temperatures during May and October also tend to promote fish survival and growth. ASA cites to the exceptional largemouth bass fishery which has resulted from the earlier spawning and a prolonged growing season. ASA suggests the proposed thermal standards "would easily be tolerated" by largemouth bass. Pet. Exh. 11 at 5-1. For bluegills, ASA observes that spawning success at these temperatures is demonstrated by the abundance of small bluegill in Coffeen Lake. Id. For channel catfish, ASA finds that the warmer water temperatures during the spring months also contribute to a prolonged growing season, leaving juvenile fish which are less temperature sensitive. Id. at 5-2. Dr. McLaren testified that Ameren's proposal "lengthens the growing season for the fish. It gives them a better ability to bulk up for the winter [and] probably better over[-]winter survival to attain larger growths." Tr. at 168, Pet. Br. at 11.

The ASA Report concludes, "Since the range of temperatures occurring in the summer have not influenced recruitment, growth, or relative weight for these three species annually, it is even less likely that the detrimental effects could result from temperatures that would be experienced in May and October under the revised standards." Pet. Exh. 11 at 5-2. In addition, ASA finds that the food supply supported by the lower trophic levels in the lake (i.e. phytoplankton, epiphyton, and macrophytes, zooplankton, benthos, and phytomacrobenthos) are also adapted to the thermal environment and should not be affected by the proposed thermal standards. Pet. Exh. 11 at 5-2. ASA cites to the intensive monitoring of the fish populations in Coffeen Lake by SIUC and IDNR to demonstrate "that the fish populations have adapted and thrived in the thermal environment of the lake." Pet. Exh. 11 at 5-2.

Finally, ASA states that fish kills are unlikely to result from the proposed thermal standards. The conditions contributing to the previous fish kills (warmest temperatures, lake stratification, and depleted dissolved oxygen) would not be expected to occur during either May or October even under the proposed thermal standards. Pet. Exh. 11 at 5-3. Ameren adds that even if such conditions did occur, Ameren would be required to de-rate to comply with the proposed limits for these months. Pet. Br. at 12.

Control of the Thermal Component of the Discharger's Effluent by a Technologically Feasible and Economically Reasonable Method (35 Ill. Adm. Code 106.202(b)(1)(B) & 302.211(j)(3)(A))

Current Methods of Control

Currently, Ameren uses good management through scheduled maintenance, de-rating, and various cooling system enhancements to maintain compliance with the thermal limits. Pet. at 25-26. Since 2000, Ameren has invested in several cooling system enhancements. In 2000, Ameren constructed a 70-acre cooling basin at a capital cost of \$20,734,000. In 2002, Ameren constructed a 48-cell cooling tower with a flow capacity of 200,000 gallons per minute (gpm) at a capital cost of \$6,833,000 million. In 2007, Ameren experimented with solar-powered aerators ("solar bees"), which are still in operation today, at a capital cost of \$120,000. Pet. at 27, Resp. to Hearing at 1. The total capital cost of the cooling system enhancements amounts to \$27,687,000 to date. Pet. at 27.

With these enhancements, Ameren states that the only challenge remaining is meeting the thermal limits in the months of May and October when summer transitional temperatures are coupled with high energy consumption. Pet. at 27-28. To maintain compliance with the current thermal limits, Ameren uses a variety of operational practices at Coffeen Station in combination with the cooling system. Ameren has historically scheduled planned outages during May and October to reduce the heat loading to Coffeen Lake during those months. Ameren has also derated the units at the Station during evening hours and lowered the load over the weekends. Since 1999, Ameren has resorted to de-rating 64 times, resulting in costs totaling \$5,584,477.17 and substantial financial hardship. Pet. at 28, Pet. Exh. 14. Without the requested relief, Ameren argues that as demand on the system increases in the future, the Station will be required to shut down or de-rate on a regular basis in order to comply with the monthly average requirements of the thermal limits in the NPDES permit. Pet. at 28. The cost of de-rating averages \$2.4 million per year under forecasted operation. Pet. Exh. 15 at 8-10.

Alternatives for Compliance

As previously stated, Ameren commissioned Sargent & Lundy, LLC to assess engineering alternatives to meet the current thermal limits based on both current Station capacity as well as forecasted increases in future capacity. Pet. at 29, Pet. Exh. 15. The current maximum plant gross electrical output is 950 MW, running with an average 82% capacity factor, which is the ratio of the actual output of a power plant over a period of time and its output if it had operated at full nameplate capacity (*i.e.* manafacturer's recommended capacity) for the entire time. Electrical output is forecasted to increase to 1,026 MW with a 90% capacity factor. Pet. Exh. 15 at 5. The Sargent & Lundy Report points out that Coffeen Lake was originally designed to provide cooling capacity equivalent for operation of a 1,000 MW station with a 70% capacity factor. Pet. Exh. 15 at 5. Despite the enhancements that were made to the cooling system (70acre supplemental cooling basin and helper cooling towers), the Station continues to experience loss in generation capacity during high station power output and hot weather, specifically in May and October. Pet. Exh. 15 at 5. **Thermal Lake Modeling:** Sargent & Lundy used its own thermal lake modeling software program to evaluate the thermal performance of the Coffeen cooling system. The model was benchmarked with actual plant operating data and historic weather conditions and run to predict the response of the cooling system to the forecasted increases in capacity. Sargent & Lundy explains that when there is insufficient capacity in the cooling system to adequately precool that water, the Station's generation is reduced. Exh. 15 at 6. The evaluation of the model showed a gradual increase in lost capacity factor over time, from 12% in 1980 to 21% in 2007, averaging 16% per year with a corresponding loss of \$2,334,000 per year (based on 2007 dollars). *Id.* at 7. Ameren states that this is a trend that is not economically reasonable for Ameren to sustain. Based on the weather conditions experienced in 2007 that resulted in the majority of recent de-ratings, the model shows that the Station would experience a 34% loss in capacity factor under the forecasted increase in capacity, resulting in a theoretical loss of \$5 million in revenue. Pet. at 29, Pet. Exh. 15 at 7, Pet. Exh. 14, Pet. Br.at 27.

<u>Identified Compliance Alternatives:</u> Sargent & Lundy evaluated several alternatives to improve the performance of the cooling system to meet the current thermal limits without resorting to de-rates.

- 1. Utilize existing system as-is with continued de-ratings
- 2. Install additional cooling towers
- 3. Add cooling basin capacity
- 4. Modify the Station to utilize a closed-cycle cooling tower
- 5. Modify the Station to utilize an air-cooled condenser on one or both units
- 6. Utilize the entire length of Coffeen Lake
- Pet. Exh. 15 at 7.

Based on the evaluation, Sargent & Lundy concluded that only Options 1 and 2, above, to be technically feasible . Pet. at 30-31, Pet. Exh. 15 at 8-10. Although Option 1 is technically feasible, this option involves continued de-rating of units, which Ameren has stated imposes a substantial financial hardship. The cost to Ameren to de-rate 64 times during the period from January 1999 through September 2007 was \$5.584 million, and costs to do so in future will only increase, averaging some \$2.3 million per year under forecasted operations. Pet. at 28 and Exh. 15 at 8-10.

As for Option 2, the corresponding capital costs for the installation of additional cooling towers range from \$13,053,000 for a 100,000 gpm cooling tower to \$18,266,000 for 175,000 gpm. However, the least cost cooling tower option would still result in lost generation through de-rates. Pet. Exh. 15 at 13. Ameren states that even the scaled-down cooling towers at \$13 million would be prohibitively expensive and would not obviate the need to de-rate in May and October. Pet. at 32. Considering capital and operating and maintenance costs, Ameren's initial prediction was that it would not recover its costs from installation of the cooling towers for 9 to 11½ years. Pet. at 33, Pet. Exh. 5 at 3. After rerunning the cost analysis with more recent data, Ameren shows that the 11½ year cost recovery time for this option would actually outlast the operating life of the cooling tower itself. Pet. Resp. to Rec. at 16. The updated analysis indicates that revenues and energy margins from the projected increase in power generation

capacity will never recover the high up-front cost for this option. *Id.* at 17, Pet. Resp. to Hearing at 1-4.

Given the minimal reduction in temperature achieved by the alternative options, including de-rating, Ameren asserts that none of them are technically feasible and economically reasonable. Pet. at 33. Ameren states that relief from the current thermal limits is critical to maintain compliance and operating capacity. Ameren emphasizes that Ameren has already invested over \$27.6 million in capital costs to enhance the cooling system just since 2000. *Id.* Ameren states, "Given the minimal environmental impact the requested relief would have on Coffeen Lake, the modified limit Ameren requests for May and October is the only economically reasonable alternative available." Pet. Br. at 2-3.

Economic Impact on Retail Customers

Ameren notes that in 1997, the Illinois electric markets and electric industry were restructured under the Illinois Electric Service Customer Choice and Rate Relief Law of 1997, 220 ILCS5/16-101–16-130 (2008). Pet. at 14. Ameren now competes to sell energy as well as capacity in the wholesale electricity markets. Ameren explains that functional control of the transmission facilities and wholesale markets is under the Midwest Independent System Operator (MISO), which covers all or parts of 11 states in the upper Midwest. As Ameren states, "MISO selects the lowest bid prices consistent with the need to have generators operating throughout the region to maintain reliability of the grid." Pet. at 15.

Because of the new market structure, Ameren explains that Coffeen's capacity and ability to deliver energy to the market directly impacts the market prices for electricity in Illinois. Pet. at 15. Ameren states that Coffeen is a baseload plant and currently among the most inexpensive power available in Illinois. If Coffeen's generating capability is reduced, Ameren asserts that the market must rely on higher-cost generating resources to serve the electricity demand, increasing the wholesale market price of electricity for the region. Retail customers will also feel these impacts in the daily and hourly market prices as well as in the longer term. Pet. at 16.

In addition, Ameren speaks to Coffeen's role in meeting growing demand for electricity. During 2002 through 2006, Coffeen operated with an average annual net generation of 66 percent of its 950 megawatts per hour (MWh) capacity. Pet. at 17. Anticipating a continuing demand for growth, Ameren is planning to increase the capacity utilization of Coffeen toward 90 percent by 2011. *Id.*. At the same time, Ameren notes that the energy demands of new air pollution control equipment (such as selective catalytic reduction) and flue gas desulfurization) would reduce Coffeen's net output by an estimated 22.6 MWh. *Id.*

Ameren states, "In summary, maximizing the availability of Coffeen Station to supply capacity and electricity to the wholesale electricity market in Illinois and the Midwest will insure to the benefit of retail electricity consumers in Illinois." Pet. at 17.

All Discharges from the Artificial Cooling Lake to Other Waters of the State <u>Comply with the Applicable Provisions of Subsections (b) through (e)</u> (35 Ill. Adm. Code 302.211(j)(1))

As for the requirements under 302.211(j)(1), Ameren states, "Ameren will ensure that such discharges comply with the applicable provisions of Section 302.211(b)-(e). Pet. at 35. As noted later, based on a suggestion by the Agency, Ameren states that it would not object to including a condition consistent with this requirement in the relief if granted. Pet. Reply Br. at 8.

<u>The Heated Effluent Discharged to the Artificial Cooling Lake Complies with All Other</u> <u>Applicable Provisions of this Section, except Subsections (b) through (e)</u> (35 Ill. Adm. Code 302.211(j)(2))

As for the provisions of 302.211(j)(2), Ameren simply states, "Ameren will ensure that such discharges comply with all other water quality criteria, except the provisions of Section 302.211(b)-(e), by relying on the results of monitoring required by its NPDES permit." Pet. at 35.

Consistency with Federal Law

Ameren states that Section 402 of the Clean Water Act (CWA), 33 U.S.C. 1342, requires thermal discharges to be permitted under the NPDES requirements. Pursuant to Section 301 of the CWA (33 U.S.C. 1311), the NPDES permit requirements include any applicable state standard. The state standard at issue here is the thermal standard adopted in PCB 77-158 that was included in Coffeen Station's NPDES permit as Special Condition No. 5. Pet. at 36.

Ameren goes on to state that under Section 316(a) of the CWA, the Board can establish alternative thermal standards based on a demonstration that the alternative standard will "assure the protection and propagation of a balanced, indigenous population of shellfish, fish and wildlife in and on that body of water." [33 U.S.C. 1326(a)] Ameren states that this standard is consistent with the Board's rules at 302.211(j)(3)(A). Pet. at 36.

AGENCY RECOMMENDATION TO DENY AND CONCERNS

On April 27, 2009, the Agency filed its recommendation that the Board deny Ameren's request for modification of the site specific thermal standards. Rec. at 1. The Agency states that Ameren has not demonstrated that the proposed thermal limits would provide conditions capable of supporting shellfish, fish and wildlife. Rec. at 9. Specifically, the Agency believes the petition fails to address the impacts of the proposed thermal standards on: (1) temperature and dissolved oxygen in Coffeen Lake, (2) total phosphorus and mercury levels in Coffeen Lake, and (3) lake habitat. Rec. at 1. The Agency also contends that Ameren has not demonstrated that alternatives to the proposed thermal limits are technically infeasible and economically unreasonable. Rec. at 20.

<u>Conditions Capable of Supporting Shellfish, Fish and Wildlife, and Recreational Uses</u> (35 Ill. Adm. Code 106.202(b)(1)(A) & 302.211(j)(3)(A))

Temperature and Dissolved Oxygen

The Agency states that Ameren has failed to demonstrate that the proposed thermal limits will provide conditions "capable of supporting shellfish, fish and wildlife" as required by 106.202(b)(1) and 302.211(j)(3)(A). Rec. at 9-10. The Agency reviewed the ASA Report in combination with the SIUC studies and does not agree with Ameren's interpretation of the results and conclusions. Rec. at 10. The Agency cites to the SIUC Report (March 2007) which documents fish kills in 1999, 2001, 2002 and 2005 and attributes the cause to (1) ambient conditions such as hot air temperatures combined with high discharge water temperatures and low dissolved oxygen, and (2) habitat erosion wherein small fish were trapped in a thermal refuge area that was eroded by prolonged periods of heated discharge. Rec. at 10, Ag. Exh. 1.

The Agency cites to the 2007 SIUC Report that describes the conditions contributing to the fish kills. Rec. at 10-11, citing Ag. Exh. 1 at 9-13:

The 1999 fish kills were likely induced by a combination of elevated discharge water temperatures, prolonged periods of relatively hot air temperatures (which reduced the cooling capacity of the lakes and increased water temperatures at most depths throughout the lakes) and low levels of dissolved oxygen due to atmospheric conditions (which also induced fish kills in local ambient lakes).

* * *

Fish kills of smaller magnitudes also occurred in the two reservoirs [Coffeen Lake and Newton Lake] during the study. Those kills were likely more directly associated with water mixing zone temperatures....This phenomenon, described as eroded fish habitats, results in smaller but more frequent fish kills such as occurred in 2001, 2002, and perhaps in Coffeen Lake in August 2005. 2007 SIUC Report at 9-10.

Referring to the 2004 SIUC Report, the Agency points out that SIUC concluded that extremely warm water temperatures during June through September may be lethal to fish species. Rec. at 11, referring to Ag. Exh. 2 at 3. The Agency states that during periods of high ambient temperatures, Coffeen Lake is heated to depths where dissolved oxygen is too low to support aquatic life leading to fish kills. Rec. at 11.

The Agency relied on the temperature data from the 2007 SIUC Report to evaluate the lake conditions during the 1999 fish kill. The Agency notes that during the time period of the 1999 fish kill, the hourly surface temperatures at the outer edge of the mixing zone exceeded 112°F during 83 hours in 1999, with most exceedances occurring over the 9-day period between July 23 and 31. Rec. at 11. Again referring to the SIUC Report, the Agency notes that the fish kill involved the larger of the larger fish, amounting to 242 largemouth bass and 6 channel catfish. *Id*.

24

In July 2001, a fish kill involved 546 channel catfish, 513 *Lepomis spp.*, and 65 largemouth bass. Ag. Exh. 1 at 10. SIUC associated the fish kill with mixing zone temperatures and eroded cove habitat in the mixing zone. Minimum water temperatures increased to nearly 100° F for a prolonged period of time, and mean water temperatures were high to a depth of 3 meters. Below this depth where temperatures were cooler, dissolved oxygen was limiting at the time. *Id*.

As for dissolved oxygen, the Agency suggests the proposed thermal limits may contribute to violations of the dissolved oxygen water quality standards at Section 302.206. Ag. Br. at 7. The Agency cites to testimony by Dr. Shortelle who estimated that under the proposed limits, the number of anoxic days would increase from 18 to 23 in segment 1 of the lake and from 17 to 25 in segment 2 in May, and from 1 to 13 in segment 1 and from 1 to 11 in segment 2 in October. Ag. Br. at 7, citing to Tr. at 228-229.

The Agency points out that Dr. McLaren testified that the lethal temperature end points for largemouth bass, bluegill, and channel catfish would be exceeded by the proposed thermal limits for May and October, and that the three RIS studied are heat tolerant species. Ag. Br. at 5 citing Tr. at 154. The Agency asks, "So what does that mean for other species of fish that exist in Coffeen Lake?" Ag. Br. at 5.

The Agency finds shortcomings in the ASA Report, comparing SIUC's evaluation of temperature and dissolved oxygen related to depth and ASA's evaluation of cumulative temperature expressed as degree days. Rec. at 14. SIUC monitored water temperatures, dissolved oxygen, and water depth profiles, estimating the volume of lake that was available for fish habitat as a percentage of the water depth at temperatures between 87 and 96°F and dissolved oxygen concentrations of 1 to 4 parts per million (ppm). The Agency notes that the SIUC estimation indicated "that potentially critical periods for fish existed in the lake between June and mid-September." Rec. at 15 citing Agency Exh. 1 at 5-6. Just 4 days before the July 1999 fish kill, SIUC estimated the fish habitat available at or below 94°F with at least 4 ppm dissolved oxygen/temperature profiles indicated that certain areas of Coffeen Lake could serve as refuges, "[h]owever, during extremely critical periods, even those areas would likely have critically low quality habitat." Rec. at 16, Ag. Exh. 1 at 14.

In contrast, the Agency finds the ASA Report's prospective assessment only reflects surface temperatures and considers conditions during May and October in isolation, failing to address how higher temperatures in May could exacerbate conditions leading to a fish kill. Rec. at 14. The Agency reiterates the testimony of Dr. McLaren. When asked whether other states use degree days to set water quality standards, Dr. McLaren responded "that would be a misapplication of degree days." Ag. Br. At 4 quoting Tr. at 135.

The Agency asserts that Ameren's proposed higher temperatures in May will increase the heat load to Coffeen Lake earlier in the summer, resulting in higher temperatures throughout the remainder of the season. Rec. at 14. The Agency states that Ameren does not demonstrate that higher temperatures in May will not exacerbate conditions during the summer that cause fish

kills. Pet. at 19. The Agency states that Ameren has not demonstrated that the proposed higher temperature limits in May and October will not prolong the period of stratification and corresponding lower dissolved oxygen levels for fish. Rec. at 14. The Agency also states Ameren has failed to address the varying temperatures and levels of dissolved oxygen at different depths throughout the lake and the resulting impacts on fish. Rec. at 15.

Total Phosphorus and Mercury Levels

The Agency raises the issue of the impact of the proposed thermal limits on total phosphorus and mercury levels in Coffeen Lake. In the Illinois EPA's 2008 Integrated Water Quality Report, Coffeen Lake is listed as fully supporting aquatic life uses, but not supporting fish consumption and aesthetic quality uses. The cause of impairment for fish consumption was mercury. The causes of impairment for aesthetic quality are attributed to aquatic plants, total phosphorus, and total suspended solids. Pet. at 16.

Regarding phosphorus, the Agency states that allowing increased water temperatures may increase the phosphorus levels in the lake. Since increased temperatures in October prolong stratification of the lake, the Agency asserts anoxic conditions may persist, allowing more phosphorus to be released from the sediment into the overlying water. The Agency explains that this internal loading of phosphorus contributes to algal growth. Rec. at 16. The Agency cites to the testimony of Ameren's expert witness, Dr. Shortelle, who estimated the proposed standards would result in an increased internal phosphorus loading of 48 to 96 kilograms per year. Ag. Br. at 6, citing Tr. at 225. The Agency approved a Total Maximum Daily Load (TMDL) for phosphorus loading from tributary and internal sources would be necessary to meet the water quality standard of 0.05 mg/L. The calculation of loading capacity was based on increasing the level of the lake by 3 feet. The Agency indicates Ameren had plans at one point to raise the dam to increase the level of the lake to meet increasing production needs. Rec. at 17. The Agency asserts that Ameren has not addressed the impact of the proposed thermal limits on phosphorus levels in the lake that are already a cause of impairment. Rec. at 17-18.

The Agency is also concerned about the impact of the proposed thermal limits on mercury levels in the lake. As discussed above, the Agency states that higher temperatures in May and October prolong stratification and low dissolved oxygen levels in the lake. According to the Agency, such conditions also contribute to increased production of methylmercury. Methylmercury bioaccumulates so that it is typically found in predatory fish. Rec. at 18. The Agency states that if temperatures are allowed to increase in May and October, the levels of mercury in the fish might also increase. Rec. at 18. The Agency cites to testimony of Dr. Shortelle that increasing lake temperatures may also increase methylation. Ag. Br. at 6.

Lake Habitat

The Agency argues that Ameren's petition does not adequately address impacts on lake habitat, citing to the 2007 SIUC Report attributing causes of fish kills to habitat erosion. Rec. at 10, Ag. Exh. 1 at 10 (see *infra*, p. 2 at n. 3).

The Agency points to the link in the SIUC Reports between habitat erosion resulting from high mean water temperatures and fish kills. The Agency cites to the 2007 SIUC Report describing a fish kill in another cooling lake, Newton Lake, which stated, "The prolonged high temperatures most likely caused fish mortality in a relatively small cove where the fish's thermal refuge was broken down." Rec. at 12, quoting Ag. Exh. 1 at 11. SIUC indicated that fish kills in June/July 2002 and August 2005 in Coffeen Lake "were likely a result of eroding habitat." Rec. at 12. The fish kills involved 42 largemouth bass, 64 striped bass, and small amounts of other species in 2002 and 19 channel catfish in 2005. The 2007 SIUC Report states the Coffeen Lake has cove habitats in the discharge area "where fish could easily congregate during less severe discharge temperatures and get trapped during a sudden increase of temperatures." Ag. Exh. 1 at 11.

<u>Technologically Feasible and Economically Reasonable Methods</u> <u>for Achieving Compliance</u> (35 Ill. Adm. Code 302.211(j)(3)(A))

In its recommendation, the Agency states that Ameren has not demonstrated that the alternatives are not technically feasible and economically reasonable. Rec. at 20. The Agency asserts that both de-rating and cooling towers are currently used as a means for compliance and could be expanded. Ag. Br. at 8. The Agency refers to the Sargent & Lundy Report, stating that the 175,000 gpm helper tower would allow Ameren to maintain compliance with the current thermal limits without de-rating. The Agency notes the cost for this option was estimated at \$18 million with a 11¹/₂ year cost recovery. Rec. at 12. The Agency notes that at the hearing, Ameren stated that it reran the economic analysis during its annual review and determined that such an investment would actually result in a negative \$2.7 million, making the investment "not economically viable." Ag. Br. at 11.

The Agency argues that Ameren's definition of economic reasonableness appears to hinge on whether an investment will result in profit, particularly whether installing supplemental cooling will allow increased power generation to realize a net profit. The Agency points out, "It will be a very rare case where environmental controls result in a profit to the regulated entity." Ag. Br. at 9. The Agency continues to argue that de-rating and supplemental cooling are both technically feasible and economically reasonable alternatives for meeting compliance. Ag. Br. at 11.

Consistency with Federal Law

The Agency points out that any relief granted to Ameren must be treated as a "water quality standard change" and will require federal approval under Section 303(c) of the Clean Water Act. Ag. Br. at 12, 15. The Agency notes that the Board regulations requiring that the showing take the form of a Section 316(a) demonstration was designed to make the Artificial Cooling Lake demonstration approvable by USEPA, thereby satisfying the conditions necessary to issue an NPDES permit. Ag. Br. at 15. The Agency states that a water quality standard change in this case could be either a site specific thermal limit or a change in use designation. Ag. Br. at 14. The Agency suggests that unless Ameren shows the site specific thermal limits will be protective of aquatic life as designated by the general use standard, then Ameren must request a change in the use designation instead. The Agency argues that the requested relief will not be protective of aquatic life, and Ameren has not suggested a change in use designation. Ag. Br. at 15. Therefore, the Agency believes, "Ameren has not made a sufficient showing to gain federal approval of the relief requested as a water quality standard change." Ag. Br. at 15.

Agency-Suggested Conditions of Relief

The Agency suggests that if relief is granted to Ameren, conditions should include requirements to demonstrate that the relief will not result in violations of other water quality standards. In particular, the Agency cites to 302.211(j)(1)

- All effluents to an artificial cooling lake must comply with the applicable provisions of the thermal water quality standards as set forth in this Section and 35 Ill. Adm. Code 303, except when all of the following requirements are met:
 - 1) All discharges from the artificial cooling lake to other waters of the State comply with the applicable provisions of subsections (b) through (e).

The Agency states that overflows from Coffeen Lake must comply with the conditions that

- b) There shall be no abnormal temperature changes that may adversely affect aquatic life unless caused by natural conditions.
- c) The normal daily and seasonal temperature fluctuations which existed before the addition of heat due to other than natural causes shall be maintained.
- d) The maximum temperature rise above natural temperatures shall not exceed 2.80 C (50 F).
- e) In addition, the water temperature at representative locations in the main river shall not exceed the maximum limits in the following table during more than one percent of the hours in the 12-month period ending with any month. Moreover, at no time shall the water temperature at such locations exceed the maximum limits in the following table by more than 1.70 C (30 F).

	o C	o F		o C	o F
JAN.	16	60	JUL.	32	90
FEB.	16	60	AUG.	32	90
MAR.	16	60	SEPT.	32	90
APR.	32	90	OCT.	32	90
MAY	32	90	NOV.	32	90
JUNE	32	. 90	DEC.	16	60

Specifically, the Agency states that Ameren has not been required to monitor discharges from Coffeen Lake. Ag. Br. at 7-8.

CONCERNS EXPRESSED IN PUBLIC COMMENT

The Board heard public comment at the hearing from two individuals and subsequently received four written public comments. Tr. at 249-253, PC #1-4.

Mary A. Bates expressed concerns with Ameren's proposal and the absence of any discussion regarding a planned longwall mining process which may affect the viability of the watershed feeding into Coffeen Lake. Ms. Bates explains that the Deer Run Mine is scheduled to longwall mine. The longwall mining includes a planned subsidence in the area under the McDavid Branch. PC #1 at 1. The Board notes that Coffeen Lake was formed by damming the McDavid Branch of the East Fork of Shoal Creek and has a watershed area of approximately 18 square miles. Pet. at 8.

Ms. Bates points out that if the McDavid Branch is subsided during the longwall mining process and is unable to flow into Coffeen Lake, the water feeding Coffeen Lake may be greatly diminished or eliminated altogether. PC #1 at 1. Ms. Bates stated, "The mine will subside the area above the lake watershed with the stated average in the permit application of 5.7 feet." Tr. at 249. Ms. Bates adds that the Office of Surface Mining has indicated that subsidence is not considered a mining activity, so reclamation related to the subsidence of McDavid Branch would not be required. PC #1 at 1.

Mary Ellen McClue expressed concern regarding the dissolved oxygen and mercury levels in the lake and suggested aeration and alternative energy sources be considered to protect the fishery. Tr. at 250-253, PC #4. Ms. McClue reiterated the concerns of Ms. Bate regarding the longwall mining and the potential impact on the watershed draining into Coffeen Lake. PC #4.

Prairie Rivers Network (PRN) filed a public comment echoing the concerns of the Agency with regard to phosphorus and mercury levels in the lake and the economic reasonableness of the compliance alternatives. PC #2. As to the economic reasonableness of compliance options, PRN suggests that Ameren supply a more detailed cost analysis to show that the \$18 million cooling tower option is actually economically infeasible. PC 2 at 3. In addition, PRN points out that Coffeen Lake lies within the Shoal Creek watershed which contains some of the State's Biologically Significant Stream reaches. PRN quotes IDNR stating, "Stream segments identified as biologically significant are unique resources in the state and we believe that the biological communities present must be protected at the stream reach, *as well as upstream of the reach*." PC #2, quoting "Integrating Multiple Taxa in Biological Stream Rating System" by IDNR¹⁸ (emphasis added in PC.) PRN states that deterioration of the high quality aquatic community present in Shoal Creek watershed must be prevented. PC #2 at 3.

¹⁸ www.dnr.state.il.us/orc/biostrmratings/images/BiologicalStreamRatingReportSept2008.pdf

In addition, PRN also raises the issue of increasing the lake level by 3 feet as a way to address the thermal discharge as well as decrease phosphorus and mercury concentrations. PC #2 at 3-4. PRN concludes by stating that the additional thermal loading must comply with the State's antidegradation regulations at 302.105, and that Ameren has failed to show that existing uses will be protected and that the increased heat loading is necessary to accommodate important social or economic development. PC #2 at 4-5.

Joyce Blumenshine also filed public comment, stating Ameren should be required to conduct additional studies of Coffeen Lake watershed before any regulatory modifications are made. Ms. Blumneshine expresses further concern regarding the longwall mining plans and the potential effect on the water levels in Coffeen Lake. As to the relative cost of installing improvements to the cooling system, Ms. Blumenshine states that Ameren's electric division realized a revenue of \$6.37 billion for 2008 out of a total revenue for the company of \$7.84 billion. Ms. Blumenshine asks why such large companies should not be required to come up with better solutions. PC #3 at 1-2.

AMEREN'S RESPONSE TO AGENCY'S AND OTHERS' CONCERNS

<u>Fish Kills</u>

Ameren asserts that the Agency's selective citations to the SIUC reports suggesting that fish kills occur frequently do not fairly represent the overall findings of the decade-long SIUC studies. Resp. to Rec. at 4, 6. Ameren states that SIUC identified three, possibly four, fish kills that were linked to thermal conditions during the 10-year study. According to SIUC, of these instances, there were two (2001 and 2002), possibly three (2005), that occurred where sudden changes in water temperature resulted in entrapment of fish in coves near the discharge point (habitat erosion). Resp. to Rec. at 6. SIUC linked the other thermally-induced fish kill in July 1999 to abnormal meteorological conditions coupled with unusually warm water temperatures. Ameren points out that SIUC investigators noted that at the time, similar fish kills were reported at other southern Illinois lakes, including at least one ambient lake. Resp. to Rec. at 7.

To put the significance of the fish kills in perspective, Ameren cites to the 2006 SIUC Report which stated that the most significant fish kill in 1999 was "relatively insignificant to the sportfish populations." Resp. to Rec. Att. 1 at 10, Pet. Br. at 13. In relative terms, SIUC stated the number of largemouth bass that died from the 1999 fish kill represented only 1% of the bass population, whereas the average total annual mortality rate for largemouth bass in Coffeen Lake from 1997-2004 is approximately 42%. Resp. to Rec. Att. 1 at 9, Pet. Br. at 13.

Ameren emphasizes that since the last of the enhancements were made to the cooling system in 2002, SIUC reported no cases of thermally-induced fish kills other than the possible 2005 event, and none of those years involved entrapment. Resp. to Rec. at 7.

Temperature and Dissolved Oxygen

In response to the Agency's concern that higher thermal limits in May and October would have carryover effect that would exacerbate summer conditions, Ameren points to the findings in the ASA and Sargent & Lundy Reports. Resp. to Rec. at 10. The ASA Report examined the data from the SIUC studies conducted during 1997-2006 and found no statistically significant relationship between higher water temperatures in May and warmer water temperatures during the remainder of the season. Resp. to Rec. at 10, referring to Pet. Exh. 11 at 2-4. ASA used the concept of degree-days to assess the cumulative thermal impact, taking into account the annual variation in heat loading and meteorological conditions. ASA relied on degree-days measured at the edge of the mixing zone to represent a near worse-case assessment of whether a carryover effect would result. Resp. to Rec. at 10-12.

Although the Agency suggests that the use of degree-days does not account for the variability of temperature and dissolved oxygen by depth, Ameren argues that ASA's use of degree-days was actually overly-conservative given the near worst-case parameters used in the assessment. Resp. to Rec. at 11. The Sargent & Lundy Report used thermal lake modeling to evaluate the impacts of the proposed thermal limits under near worse-case conditions and increased Station power output. The modeling showed that the mean daily lake temperatures in June through September would be unaffected by loadings in May. Resp. to Rec. at 11.

As to the Agency's concern regarding the effect of the proposed thermal limits on dissolved oxygen, Ameren refers to the ASA Report and testimony by Dr. McLaren. ASA analyzed the SIUC data to determine whether thermal loading resulted in a carry-over effect on dissolved oxygen levels as the summer months progress. ASA plotted data from SIUC for the depth at which the 5 mg/L dissolved oxygen was first encountered each week during the summer months of 2000 through 2006. While the depth at which the 5 mg/L dissolved oxygen level varied from week to week throughout the summer, ASA indicates that the data plots show no discernable pattern that dissolved oxygen depletion increases as the summer progresses. Resp. to Rec. at 13, Hearing Exh. 2 at 6. Dr. McLaren testified that the epilimnion¹⁹ remains oxygenated with dissolved oxygen concentrations usually well in excess of 5 mg/L. Tr. at 29, Pet. Br. at 9.

Responding to the Agency's concerns regarding temperature, dissolved oxygen, and habitat erosion, Dr. McLaren states that he found Coffeen Lake provides a diverse habitat where thermal refuge is available at any time in various parts of the lake. Tr. at 29, Pet. Br. at 9. Dr.

¹⁹ As to epilimnion and hypolimnion, Dr. McLaren explains,

In stratified lakes, because of the difference in the density of the water, usually because of the temperature, you have layers called epilimnion, which is above a layer called a metalimnion where there's a thermocline. There's a rapid decrease in temperature. And then the densest water remains at the bottom in a layer that's called hypolimnion. So the epilimnion is the region where fish and possibly the metalimnion where fish would generally remain during periods of stratification within the lake. Tr. at 29.

McLaren testified, "Accordingly, there should be no adverse effect on the fishery by the proposed increase in the thermal standard for May and October." Hearing Exh. 2 at 6.

The Agency cites to the IDNR 2007 Lake Management Status Report (Pet. Exh. 12) listing the relative weight index (WR) and numbers (catch per unit effort, CPUE) of species in Coffeen Lake from 2000 - 2006. Based on the data, the Agency concludes that, the relative weight and numbers of all species in Coffeen Lake have declined. Rec. at 20, referring to Pet. Exh. 12 at 3, Resp. to Rec. at 9. Ameren responds stating that Dr. McLaren has not found that these numbers conclusively demonstrate thermal stress. Dr. McLaren testified that the numbers in the 2007 Lake Management Status Report more likely reflect competition with other species for food, angling pressure, increasing predator base, or the cyclical nature of a particular species. Tr. at 173-185, Pet. Br. at 10.

Ameren again notes that the Agency did not introduce its own expert testimony on any of the issues the Agency raised. Pet. Br. at 18.

Total Phosphorus and Mercury Levels

Ameren responds to the Agency's concerns regarding the effect of prolonged stratification and anoxic conditions on the total phosphorous and methylmercury levels in Coffeen Lake. To address the Agency's concerns, Ameren commissioned Dr. Anne B. Shortelle of MACTEC to quantify potential for additional phosphorus and mercury release related to the proposed thermal limits. Resp. to Rec. at 14. MACTEC's report is entitled, "Evaluation of Effects of Revised Thermal Standards on Phosphorus and Mercury Cycling in Coffeen Lake" (MACTEC Report). Resp. to Rec. at 14, Hearing Exh. 3 Attachment 1.

The MACTEC Report addressed the potential for the proposed thermal limits to impact the internal phosphorus loading and contribute to the Agency's concern regarding algal growth. Dr. Shortelle looked at seasonal trends with regard to phosphorus and Chlorophyll-a. Chlorophyll-a is an indicator of algal growth and grows better with more nutrients such as phosphorus. Hearing Exh. 3 Att. 2 at 2-2, Tr. at 44, Pet. Br. at 19. The MACTEC Report shows that any phosphorus released from the sediment would not be expected to reach the epilimnion where Chlorophyll-a is produced. Therefore, any additional phosphorus loading would not be available for biological production within Coffeen Lake to contribute to algal growth.

Dr. Shortelle's analysis continues that even if phosphorus were released from the hypolimnion (at depth) up into the epilimnion, this internal loading would be unobservable compared to the loading from external sources. Dr. Shortelle explained that if significant phosphorus were released from the sediment, it would be observed in the Chlorophyll-*a* after a fall turnover when the stratified levels in the lake mix. Dr. Shortelle testified, "This is not seen in Coffeen Lake." Tr. at 46. Dr. Shortelle compared seasonal water quality data and found no evidence that internal phosphorus loading from sediment was an important component of total phosphorus loading in Coffeen Lake. Resp. to Rec. at 14. Dr. Shortelle predicted that the increase in internal phosphorus loading attributable to the proposed thermal limits would be no more than 1.5%. Hearing Exh. 3 Att. 2 at 2-25. Dr. Shortelle concluded,

Future modifications to thermal discharge limits from the Ameren Power Generating Plant are unlikely to present additional phosphorus loads from sediment release in the future, and therefore are not a threat to the existing water quality of Coffeen Lake. Resp. to Rec. at 14-15, Hearing Exh. 3 Att. 2.

Dr. Shortelle found that the source of phosphorus in Coffeen Lake is primarily external loading due to runoff from agriculture in the watershed. Tr. at 47, Hearing Exh. 3 Att. 2 at 2-7. Dr. Shortelle testified,

We know that this is occurring because we can see in the areas of the lake that are closest and out of the influence of the cooling water loop, we see that phosphorus and Chlorophyll-*a* are highest there. And we see that that area of the lake is filling in with sediments, soils that are sediments, soils that are washing in from the watershed." Tr. at 47.

Ameren adds that the CWA Section 303(d) listing for Coffeen Lake does indeed list "crop production" as a source of the phosphorus impairment. Pet. Br. at 20, referring to the Illinois Integrated water Quality Report and Section 303(d) List – 2008, App. B-3.

Although the 2007 TMDL document placed an emphasis on the contribution from internal loading of phosphorus, Dr. Shortelle testified that this is not supported by the data and stems from an error in the TMDL modeling. Tr. at 47-48. Ameren introduced information regarding a 2009 Addendum to the 2007 TMDL which came about from an Agency request regarding a project Ameren is planning for the East Fork Shoal Creek. Tr. at 221. Although the report was only recently finalized and has not yet been approved by USEPA, Dr. Shortelle indicated the emphasis on internal loading of phosphorus "was lessened somewhat, partially corrected in the 2009 addendum." Tr. at 48.

In the 2007 TMDL, the Agency indicated the calculation of phosphorus loading capacity depended on increasing the level of the lake by 3 feet based on plans Ameren had to raise the dam. Rec. at 17. Ameren states that the current proposal is to transfer water from the East Fork Shoal Creek to Coffeen Lake to provide the additional water supply needed for new air pollution control equipment being installed, the FGD and SO₂ scrubbers. Pet. Br. at 32, Tr. at 83. When asked by the Board's technical staff at hearing whether raising the dam by 3 feet posed other environmental impacts by changing the contour of the lake, Dr. Shortelle replied, "Absolutely." Tr. at 236.

As to mercury, the MACTEC Report also considered the Agency's concern that the proposed thermal limits might prolong thermal stratification and low dissolved oxygen levels in the lake leading to an increase of methylmercury in fish. Dr. Shortelle explained that mercury methylation is affected by multiple parameters, not solely thermal stratification, and the suite of parameters should be evaluated as a whole before making any predictions. Based on the available data for Coffeen Lake, Dr. Shortelle found that mercury concentrations are low and that conditions do not appear favorable for methylation. Although thermal stratification might be prolonged under the proposed limits, Dr. Shortelle states that this would not substantially change lake conditions.

R 035

This change is minor, and does not represent a change that could or would significantly increase hypolimnetic mercury methylation rates. It is anticipated that the change, if any, would be so small, that it would not result in increased mercury in the biota. Hearing Exh. 3 at 4-2.

Dr. Shortelle commented that in general, mercury levels in fish are expected to decline as a result of mercury load reductions across the region. Hearing Exh. 3 at 4-2. Ameren adds that Illinois recently adopted regulation aimed at reducing the levels of atmospheric deposition of mercury from electric generating utilities. Ameren cites the Illinois mercury rulemaking proceedings where the Agency testified that the reductions in atmospheric deposition were expected to correlate to lower mercury levels in fish within a period of a few years. Resp. to Rec. at 16, citing to In the Matter of: Proposed New 35 Ill. Adm. Code 225 Control of Emissions From Large Combustion Sources (Mercury), R06-25, Testimony of Marcia Willhite, at 162-172 (June 14, 2006).

To comply with the new regulations, Ameren has and continues to install pollution control equipment to reduce mercury emissions from its facilities. Ameren states, "In fact, pollution controls that Ameren will initiate in a matter of months will likely have an overriding beneficial impact to Coffeen Lake by actually reducing mercury loading due to air deposition." Pet. Br. at 22. Ameren states that SO₂ scrubbers will be in place by the end of 2009, which will operate throughout the year to also reduce mercury emissions. Pet. Br. at 31.

Alternatives for Achieving Compliance

Ameren reiterates that the option supported by the Agency of installing a 175,000 gpm cooling tower at a capital cost of \$18 million is economically prohibitive. In preparing for the hearing in this case, Ameren refined and updated the financial analysis done by Sargent & Lundy using May 2009 capacity and energy prices as well as future market prices for power and the likelihood of additional compliance costs or CO_2 tax. Based on Ameren's Economic Value Added Model or Economic Viability Analysis (EVA), the more recent analysis shows that the 11½ year cost recovery time for this option would actually outlast the operating life of the cooling tower itself. Resp. to Rec. at 16. The updated analysis indicates that revenues and energy margins from the projected increase in power generation capacity will never recover the high up-front cost for this option. Resp. to Rec. at 17, Resp. to Hearing at 1-4.

Ameren states that given the minimal environmental impact of the requested relief, the proposed thermal limits for May and October represent the only economically reasonable alternative available. Pet. Br. at 2-3.

Environmental Impact

Ameren states, "Coffeen Lake supports abundant and diverse wildlife, including muskrat, turtles, heron and mussels. It also supports a robust fishery, comprised of 22 species of fish, and is well known as the home of numerous competitive sport-fishing tournaments." Pet. at 20.

Nonetheless, Ameren states that the regulations do not require that there necessarily be a fishery or recreational uses, only that the artificial cooling lake provide "conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices..." 35 Ill. Adm. Code 302.211(j)(3)(A). Moreover, Ameren states, "Coffeen Lake clearly need not support an *optimal* fishery, but simply *conditions capable* of supporting a fishery." Pet. Br. at 6. Ameren cites to the Board's opinion in the original R75-2 rulemaking:

[U]nder subsection (cc) (1) [now section 302.211(j)], it is not absolutely required that there be a fishery, or that an artificial cooling lake provide recreational or any other uses except that for which it was designed . . . [b]ut it is nonetheless felt that by requiring such <u>conditions</u> in a lake we will have taken a significant step in protecting water quality. <u>Water Quality and Effluent Standards Amendments</u>, <u>Cooling Lakes</u>, R75-2, slip op. at 40 (Sept. 29, 1975) (emphasis in original).

Ameren cites to the relief granted to Illinois Power in PCB 92-142 stating, "the Board found that minimal impacts to reproduction, growth and survival of some species did not constitute a significant ecological impact as long as the adjusted thermal limit would not inhibit the propagation of fish or other aquatic biota." Pet. Br. at 7, referring to <u>Petition of Illinois</u> <u>Power Co. for Hearing Pursuant to 35 Ill. Adm. Code 302.211(j) to Determine Specific Thermal Standards</u>, PCB 92-142, slip op. at 7 (August 26, 1993).

Conditions of Relief

Ameren responds to the Agency's suggestion that any relief granted to Ameren contain a condition requiring discharges from Coffeen Lake to meet the standards of 35 Ill. Adm. Code 302.211(b)-(e). Ameren notes that the discharge from Coffeen Lake to the East Fork Shoal Creek is so infrequent, that Ameren has had almost no opportunities to collect data to make a demonstration. Ameren states that making a demonstration is not necessarily a prerequisite to the Board granting relief. However, Ameren recognizes that pursuant to Section 106.200(a)(2)(C)(i)

A Board order providing alternate thermal standards...will include...the following conditions...(i) all discharges from the artificial cooling lake to other waters of the State must comply with the applicable provisions of 35 Ill. Adm. Code 302.211(b) through (e)." Pet. Reply Br. at 7-8.

Ameren indicated it would not object to a condition consistent with 35 Ill. Adm. Code 106.200(a)(2)(c)(i) as part of the requested relief. Pet. Reply Br. at 8.

Dr. McLaren indicated that if Ameren's request for relief is granted, further studies of the fish are planned. This is in response to IDNR's desire to see the long-term database continue to develop. Tr. at 213. One study Ameren and IDNR plan to develop would be a study to investigate the ability of fish to avoid exposure to stress by seeking preferred temperatures within the Lake's environment. The study would be designed to complement IDNR data. In another study, Ameren has already committed to implement a 3-year fish stocking pilot study at the Lake in conjunction with IDNR. Ameren has agreed "to financially support a three-year pilot stocking

program to introduce suitable species, such as the blue catfish, to help IDNR better assess the long term nature of maintaining a viable, recreational resource." Hearing Exh. 2 at 12.

At hearing, Ameren indicated that these studies are not being proposed as conditions to the requested relief. Tr. at 212. However, Ameren did revise its proposed language to include an agreement with IDNR to respond in the event of excessive fish mortality during the months of May and October and implement appropriate mitigation measures. Pet. Br. at 15.

Response to Public Comments

Ameren responded to each of the oral public comments made at hearing as well as the four written public comments filed.

With regard to concerns voiced by Ms. Bates (PC #1, Tr. at 249), Ms. Blumenshine (PC #3), and Ms. DeClue (PC #4, Tr. at 20-253) about the effect on lake levels from the Deer Run Mine in combination with Ameren's proposal (PC #1, Tr. at 249-250), Ameren states that it is not familiar with the mining project. Ameren does not believe that the activities associated with the longwall mining are germane to the relief requested here. Nonetheless, Ameren notes that under the proposed thermal limits, Ameren will actually draw less water from Coffeen Lake than if it were to install additional cooling towers. Ameren explains that cooling towers are extremely water consumptive since they use evaporation. Pet. Br. at 30.

In response to concerns raised by Prairie Rivers Network (PRN) (PC #2), Ameren reiterates the work done by Dr. Shortelle to support the conclusions regarding phosphorus and mercury as well as the economic analysis performed by Ameren to demonstrate the economic reasonableness of the alternatives. Although PRN disputes the use of the 2009 Addendum to the TMDL, Ameren makes it clear that Dr. Shortelle relied on her own analysis to estimate the internal phosphorus loading, not the 2009 Addendum. Pet. Br. at 30-31.

Ameren also responds to PRN's concern that Biologically Significant Stream Reaches have been identified in the Shoal Creek watershed that might be affected by discharges from Coffeen Lake. Ameren notes that discharges from Coffeen Lake are relatively rare. Even so, Ameren believe that such discharges result in an improvement to the East Fork Shoal Creek since the phosphorus concentration is actually much lower in Coffeen Lake than in the creek. Pet. Br. at 31-32, referring to Illinois EPA, 2009a, Coffeen Lake and East Fork Shoal Creek TMDL Addendum, Hanson Prof. Serv., Apr. 2009.

In its petition, Ameren indicated the East Fork of Shoal Creek is a general use water body and rated as a "B" stream under the Agency's Biological Stream Characterization system. Pet. at 8. Ameren states that the creek is not listed in the INHS's publication of "Biologically Significant Illinois Streams". Pet. at 8. As to PRN's inquiry behind Ameren's decision not to pursue raising the dam level by three feet, Ameren states that the current proposal is to transfer water from the East Fork Shoal Creek to Coffeen Lake and that permits are pending. Ameren indicates the additional water supply is needed for new air pollution control equipment being installed. Pet. Br. at 32. In response to the inquiry from Ms. Blumenshine (PC #3) when she asked why such large companies should not be required to come up with better solutions, Ameren replies, "the requested relief will not allow Ameren to realize a profit at the cost of the environment." Pet. Br. at 33. The proposal would only allow Ameren to avoid de-rating during May and October and the corresponding economic losses. In addition, the requested relief would help to mitigate losses in net generating capacity resulting from the operation of the new air pollution control equipment being installed. Pet. Br. at 34.

Ameren also responded to the oral and written comments of Mary Ellen DeClue (PC #4, Tr. at 250-253). At hearing Ms. DeClue inquired about the use of aeration to improve oxygen levels in the lake. Tr. at 251. Ameren noted that solar-powered aerators, dubbed "solar bees", have been used on an experimental basis since 2007 to mix and cool the lake water. Ameren plans to continue using the solar bees to enhance cooling. Pet. Br. at 34.

DISCUSSION

The Board first observes that, in 1982, when the alternative thermal standards were first granted for Coffeen Lake, the criteria of the previous Rule 203(i)(5) required "a one-time showing by a power station that it has not caused nor can reasonably be expected to cause significant ecological harm to its cooling lake." PCB 77-158, PCB 78-100, slip op at 1 (March 19, 1982.)(citing Rule 203(i)(5)). That particular language is no longer present in the Board's current rules, and the current rules require the Board to revisit thermal issues despite the fact that, as Ameren states, Coffeen Station is not a new facility nor is it changing any design parameters of its generating equipment that would affect its thermal effluent discharged into Coffeen Lake. Resp. to HOO at 2, Tr. at 124.

In summary, Ameren seeks to modify the existing site specific thermal standards to increase the thermal limits applicable to heated effluent discharge from Ameren's Coffeen Power Station to Coffeen Lake. Ameren asserts that the modification of the thermal standards is needed to meet its NPDES permit limits without de-rating. Ameren believes the modified thermal limits will allow Ameren to meet increase power output to meet market demands, and mitigate the loss in net generating capacity from operation of new air pollution control equipment. Ameren has submitted extensive studies and data to demonstrate that the modified thermal limits are environmentally acceptable.

For all of the reasons set for below, the Board finds that Ameren has justified the grant of modified thermal discharge limits in compliance with the standards set in Sections 106.202(b)(1)(A) and 302.211(j)(3)(A). The Board finds that Ameren has provided information and argument to meet the question and concerns raised both by the Agency and the public commenters. Neither the Agency nor any members of the public presented expert testimony or exhibits which dispute the information which Ameren presented, and which was subject to cross-examination. Again, the only exhibits the Agency filed consisted of the 2000-2005 series of reports by SIUC.

The Board grants the requested modification effective today, subject to the conditions in the Board's order.

Supporting Documentation for Initial Coffeen Lake Thermal Demonstrations

In reviewing the record in this PCB 09-38 proceeding, the Board has revisited the record in the prior Lake Coffeen proceedings. In PCB 77-158/PCB 78-100, CIPS supported its Thermal Demonstration with, among other studies and data, a 3-year series of reports from 1979 to 1981 completed by the INHS.

For the sake of ease for public access to pertinent historical documents, the Board's Clerk's Office scanned in portions of the microfiche file from PCB 77-158 to the Clerk's Office Online (COOL), including the 1981 Tranquilli and Larimore report: Petitioner's Group Exhibit 1a: "Part I: Environmental Studies of Coffeen Lake, A Thermally-Altered Reservoir, Part II: Ecological Investigations of Shoal Creek, Final Report to Central Illinois Public Service Company", INHS, Urbana, Illinois, July 1981, John A. Tranquilli and R. Weldon Larimore, Principal Investigators; Lance G. Perry, Project Coordinator. This report is 470 pages long, not including the appendices. Also scanned in is a report entitled "Lake Coffeen – Biological and Chemical Findings", Sept. 14, 1977.

The microfiche file for PCB 77-158 also contains the extensive studies leading up to the 1981 Tranquilli and Larimore report that were performed by the INHS (1979, 1980, 1981) that appear as three separate documents: First Annual Report (1979), Second Annual Report (1980), and Final Report (1981). The combined studies apparently stacked 8-inches high. The introduction to the final report states:

"In July 1978, at the request of Central Illinois Public Service Company (CIPS), the Illinois Natural history survey began a 3-year investigation of the environmental effects of CIPS Coffeen Power Station on Coffeen lake and its receiving stream, Shoal Creek. The overall objective of this study was to provide diagnostic data for use in determining whether Coffeen Lake and Shoal Creek were environmentally acceptable in terms of supporting shellfish, fish, wildlife, and recreational uses consistent with good management practices." Final Report to Central Illinois Public Service Company by INHS, July 1981, page 1.1.

When CIPS petitioned the Board for a variance in PCB 97-131, CIPS intended to return to the Board for permanent relief after three years in the form of a site-specific rule. When the Board granted the 5-year PCB 97-131 variance in 1997, the Board included, as a condition of the variance, that CIPS continue to study the thermal effects on the fishery in Coffeen Lake. The Board also indicated the record needed more economic information to quantify the hardship. (*See* <u>CIPS</u>, PCB 97-131, slip op. at 5-6 (June 5, 1997). During the period of the variance, lake temperature data for May and October were to be closely monitored and compared to historical data, and the annual fish surveys were to be reviewed by the IDNR to verify that there was no significant impact. *Id.* at 3, 5.

To comply with the 1997 variance, CIPS (now Ameren) retained SIUC to continue studying Coffeen Lake, producing the 1997-2006 SIUC studies referenced in Ameren's current proposal. Subsequently, Ameren commissioned ASA to prepare a report presenting "an

overview of the evidence supporting the conclusion that raising the thermal limits for the months of May and October presents minimal additional risk to fish populations in the lake." Pet. Exh. 11 at 1-1. Ameren also provided more economic information to quantify the hardship through the Sargent & Lundy Report (Pet. Exh. 12) and Ameren's updated Economic Value Added model or Economic Viability Analysis (EVA). Tr. at 15-20, 72-74, Resp. to Hearing at 1-4.

Ameren's Current Artificial Cooling Lake Demonstration

Ameren's artificial cooling lake demonstration embodied in the ASA Report draws from a long history of studies from INHS (1978-1981, 2002), IDNR (2007, covering 2000-2006), SIUC (1997-2007) as well as Ameren's consultants from Sargent & Lundy (2008) and an extensive literature review. (Pet. Exh. 11.) In response to particular Agency concerns, Ameren also supplements its thermal demonstration with the MACTEC Report (2009). Hearing Exh. 3 Att. 2.

The ASA Report includes as part of its basis the Tranquilli and Larimore 1981 Final Report by the INHS that was completed under the previous thermal demonstration for Coffeen Lake in PCB 77-158/PCB 78 covering a three-year study period from 1978-1980. The Tranquilli and Larimore (1981) report addressed several components of the aquatic community, including algae, zooplankton, benthos, and fish. Whereas the entire fish community was addressed in the report, the three species most frequently chosen for detailed study were largemouth bass, bluegill, and channel catfish. Resp. to HOO at 5.

When SIUC was retained to conduct the study under the 1997 variance, the same three species were selected as the target species, RIS, for the study. The proposed study underwent review and comment by IEPA and IDNR as well as the public. IDNR approved of the study and the selection of the three RIS to be monitored on an annual basis to comply with the variance PCB 97-131: largemouth bass, bluegill, and channel catfish. Exh. 11 at 3-1. The three RIS are also considered to represent the lower trophic levels as well. Resp. to HOO at 9. In addition, Ameren addresses consideration that was given to threatened and endangered species, nuisance species, unique and rare habitat, and other vertebrate wildlife. Resp. to HOO at 5-6, 9-10.

The ASA Report follows an approach similar to the USEPA's Ecological Risk Assessment (ERA) framework. Ameren indicates that other recent 316(a) demonstrations have shown that the decision criteria from 1977 USEPA 316(a) Manual "is congruent with this more recently developed guidance for evaluating the adversity of effects from a wide variety of ecological stressors." Resp. to HOO at 7-8. ASA's use of the ERA approach relied on multiple lines of evidence for both a retrospective assessment and a prospective (predictive) assessment of the potential risks for increasing the thermal standards in May and October in Coffeen Lake. Resp. to HOO at 8. ASA considers the studies arising from the 1997 variance as "an incremental step in compliance with the NPDES permit conditions for the Station rather than a Section 316(a) demonstration." Resp. to HOO at 8. Nevertheless, ASA provides a summary of the conclusions from their investigation similar to a 316(a) Master Rationale. Resp. to HOO at 8.

Ameren Has Justified that Modified Thermal Limits Are Environmentally Acceptable

The Board's rules do not explicitly require artificial cooling lake demonstrations take the form of a CWA Section 316(a) showing, but they do explicitly allow it. As discussed below, the Board finds that Ameren makes a convincing demonstration pursuant to 301.211(j)(3) and (4) and satisfies the Board's rules. The Board agrees with ASA that the amount of long-term data that has been produced in connection with Coffeen Lake is "unusual and fortunate" in assessing the effects of the thermal regime on the fish, and the Board notes that Ameren is committed to further study of the lake through agreements with IDNR.

As previously discussed, the federal regulations at 40 CFR 122 provide for two possible types of predictive CWA Section 316(a) demonstrations, Type II: Protection of Representative Important Species and Type III: Alternative Demonstrations. Based on the manner in which the studies were conducted to support Ameren's petition, the Board will consider Ameren's demonstration similar to a Type II demonstration. The Section 316(a) Manual states that a Type II Demonstration should fully develop three key biological components: completion of the Biotic Category Rationale (begun during early screening procedures), development of RIS Rationale, and synthesis of all information into a Master Rationale. Section 316(a) Manual at 34.

The Board finds that Ameren's retrospective assessment demonstrated that no appreciable harm from the thermal discharge from Coffeen Station to the three RIS: largemouth bass, channel catfish, or bluegill. As Ameren stated,

In fact, all three RIS exhibit characteristics such as survival, growth, body condition, population size, and recruitment of young that are comparable to or exceed those for populations in other regional and national water bodies. Resp. to HOO at 8.

The Board concludes that the condition of these populations attests to the accuracy of ASA's conclusion that "Coffeen Lake's thermal regime is also suitable for lower trophic levels that provide forage for these top consumers." Resp. to HOO at 9. The record amply demonstrates the exceptional fishery and the recreational value of Coffeen Lake.

The Board finds that ASA's conclusions are consistent with the Board findings in the original rulemaking for thermal standards in cooling lakes:

It would appear that, within limits . . . the addition of heat from a steam-electric generating plant actually aids in the growth and development of gamefish in artificial cooling lakes . . . While the continued growth of fish and other aquatic organisms during winter is unquestionably not in the natural order of things for Illinois lakes; it would appear that this phenomena nonetheless contributes to the recreational value of an artificial cooling lake. Further, it would appear that the presence of such a fishery as is evidently produced by the thermal effluent may also be a good indication of the general environmental quality and acceptability of an artificial cool lake . . . Apparently, then, the existence of this type of recreational use is compatible with the preservation of our environment. Water

Quality and Effluent Standards Amendments, Cooling Lakes, R75-2, slip op. at 22 (Sept. 29, 1975).

In PCB 77-158/PCB 78-100, when establishing the initial site specific standards for Lake Coffeen, the Board found conditions very similar to the conditions presented for the current proposal:

The evidence indicates that Coffeen Lake supports a diverse fishery consisting of a total of twenty-two species and which is comparable to other central Illinois reservoirs. Coffeen Lake supports an abundance of fish second only to Lake Shelbyville in a group of 200 Midwestern and Mid-southern reservoirs studied. The Coffeen Lake fishery appears to be in good condition with the exception of the stunted condition of blue gills, a condition common to reservoirs and probably cause by too great a population for the existing food supply.

The lack of significant fish kills over the years at Coffeen Lake indicates that adequate mode-rate temperature refuge areas exist to enable the fish population to survive the short-term, high-temperature conditions that exist during late summer months. <u>CIPS</u>, PCB 77-158/PCB 78-100, slip op. at 2-3 (March 19, 1982.)

The record here thoroughly discusses the documented fish kills since then. Of the documented fish kills in 1999, 2001, 2002, and 2005; SIUC concluded the most significant fish kill in 1999 was "relatively insignificant to the sportfish populations", involving 1% of the largemouth bass population, whereas the average annual mortality rate is 42%. Resp. to Rec. Att. 1 at 9-10, Pet. Br. at 13. ASA concluded that fish kills are unlikely to result from the proposed thermal standards since conditions contributing to the previous fish kills (warmest temperatures, lake stratification, and depleted dissolved oxygen) would not be expected to occur during either May or October. Pet. Exh. 11 at 5-3. Ameren provides the assurance that even if such conditions did occur, Ameren would be required to de-rate to comply with the proposed limits for these months. Pet. Br. at 12.

ASA concluded that "raising the thermal limits for the months of May and October presents minimal additional risk to fish populations in the lake." Pet. Exh. 11 at 1-1. In response to the Agency's concerns, ASA demonstrated that proposed thermal limits for May will not necessarily result in a carryover of warmer temperatures throughout the remainder of the summer. Pet. Exh. 11 at 2-4. ASA also demonstrated that dissolved oxygen does not exhibit a pattern of depletion throughout the summer, and that the epilimnion remains oxygenated with dissolved oxygen concentrations usually well in excess of 5 mg/L. Tr. at 29, Pet. Br. at 9. ASA found that Coffeen Lake provides a diverse habitat where thermal refuge is available at any time in various parts of the lake. Tr. at 29, Pet. Br. at 9. Based on MACTEC's analysis of phosphorus and mercury, the proposed standards are also not expected to contribute to a significant increase in internal phosphorus loading or mercury methylation. Hearing Exh. 3 Att. 2.

The Board notes that CWA Section 316(a) of the CWA contains language for alternative thermal effluent standards to "assure the protection and propagation of a balanced, indigenous

. .

population of shellfish, fish and wildlife in and on that body of water." 33 U.S.C. 1326(a). In comparison, the Board's rules at Sections 106.202(b)(1) and 302.211(j)(3)(A) require a demonstration that the cooling lake "will be environmentally acceptable, and within the intent of the Act, including, but not limited to... provision of conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices." 35 Ill. Adm. Code 106.202(b)(1), 302.211(j)(3)(A). Although the Board's rules for alternative thermal water quality standards are somewhat different, Ameren responds to the Agency's question of whether the concept of thriving fishery is the same as a balanced indigenous community. Dr. McLaren testified

Fisheries are managed, and this is a particularly well-managed fishery. They're managed for particular sport fish, more often than not. So you would look at it in terms of the importance of a particular game species that are being fished for and exploited, but also for the overall community composition. So the fish themselves that are being managed are only a component of the overall balanced community. And in all probability, you wouldn't have a strong recreational fishery if you didn't have a balanced community. Tr. at 126-127.

For all of the foregoing reasons, the Board finds that under the proposed modified standards for May and October, Coffeen Lake will continue to be capable of supporting shellfish, fish, and wildlife, and recreational uses consistent with good management practices as required by Sections 106.202(b)(1)(A) and 302.211(j)(3)(A).

<u>Ameren Has Demonstrated that Existing Means for Control of the Thermal Component</u> of Its Discharge are Economically Reasonable and Technically Feasible

For all of the reasons set forth below, the Board finds that Ameren's control of the thermal component of its effluent using the existing cooling system is by a technologically feasible and economically reasonable method. The Board recognizes that Ameren is committed to de-rate if necessary to comply with the proposed limits. Pet. Br. at 12. Based on this record, the Board does not believe that to require further environmental controls will provide any net benefit to Coffeen Lake. On the other hand, the costs to Ameren and its ratepayers of installing an additional cooling tower, or of continued de-rating to meet the existing standards, are clear.

As to Ameren's control of the thermal component of its discharge, it is uncontested that, since 2000, Ameren has invested some \$26.7 million dollars to enhance cooling capabilities. Even so, it has had to de-rate some 64 times since 1999, at a cost of over \$5.5 million dollars, The costs of de-rating are expected to increase overtime, averaging \$2.3 million per year (2007 dollars) under the forecasted operations. Pet. at 28, Exh. 14. Costs of continued de-rating will likely be passed through to ratepayers.

It is also undisputed that the cost of the technically feasible additional enhancements available to Ameren range from \$13,053,000 to \$18,266,000, and that the least expensive of these options did not completely mitigate Ameren's need to de-rate. Exh. 15 at 13. Ameren's EVA indicated the cost recovery time for the \$18 million option would outlast the operating life of the cooling tower itself, and Ameren would never recover the high up-front costs. Resp. to Rec. at 16-17, Resp. to Hearing at 1-4.

The Agency argues that Ameren could continue to de-rate as a means of compliance, arguing that, "It will be a very rare case where environmental controls result in a profit to the regulated entity." Ag. Br. at 9. While the Board does not disagree with the Agency, the Agency's comment neglects the fact that the uncontroverted expert testimony here supports the finding that no significant environmental impact is expected to occur as a result of Ameren's proposal. Additionally, this does not take into consideration Ameren's need to mitigate losses in net generating capacity due to operation of new air pollution control equipment or the financial losses in revenue.

Conditions

The Agency suggests that if relief is granted to Ameren, conditions should include requirements that Ameren demonstrate that the relief will not result in violations of other water quality standards. In particular, the Agency cites to 35 Ill. Adm. Code 302.211(j)(1), requiring that overflows from Coffeen Lake must comply with 302.211(b)-(e). The Agency reports that Ameren has not been required to monitor discharges from Coffeen Lake. Ag. Br. at 7-8.

In response to the Agency's suggestion, Ameren indicated it would not object to a condition consistent with 35 III. Adm. Code 106.200(a)(2)(C)(i) as part of the requested relief. Pet. Reply Br. at 8. Although the Agency appears to suggest that Ameren should be subject to monitoring, Ameren replies that discharges from Coffeen Lake to the East Fork Shoal Creek are so rare that Ameren has had almost no opportunity to collect such data. Pet. Reply Br. at 7. In its original petition, Ameren states, "[s]everal months often lapse without a discharge over the spillway. Prior to an overflow on April 11, 2008, the lake had not discharged to the East Fork of Shoal Creek since May 2005." Pet. at 8.

The Board agrees with Ameren that the regulations at 35 Ill. Adm. Code 106.200(a)(2)(C)(i) do not specifically require monitoring to make its modification demonstration. As for 35 Ill. Adm. Code 106.200(a)(2)(C)(ii) (which has parallel language at 35 Ill. Adm. Code 302.211(j)(2)), Ameren states "Ameren will ensure that such discharges comply with all other water quality criteria, except the provisions of Section 302.211(b)-(e), by relying on the results of monitoring required by its NPDES permit." Pet. at 35. Therefore, the conditions set forth by the Board in the following Order include those as stated in 35 Ill. Adm. Code 106.200(a)(2)(C)(i) - (ii).

The Board notes Ameren has also made a commitment for additional fish kills studies, and provided a draft MOU with IDNR. Ameren stated if the requested relief is granted, Ameren and IDNR have agreed to a draft MOU to conduct additional studies on Coffeen Lake and the fishery. Resp. to Hearing at 5. Ameren states, "If investigation shows that a fish kill has resulted from the requested relief, Ameren agrees to replenish or replace the impacted resource pursuant to the terms and conditions of a Fish Stocking Plan to be developed in consultation with IDNR." Pet. Resp. to Hearing at 6, Exh. C.

Paragraph 2 in the Board's Order below reflects Ameren's commitment. But, as IDNR is not a party to this proceeding, IDNR is not named as a party to be bound by the Board's order.

43

Public Comments

The Board wishes to acknowledge the thoughtful public comments it has received in this proceeding, and to address a couple of them briefly. The Board does not now have authority or ability to address any potential subsidence or other effects on Lake Coffeen from any proposed longwall mining at Deer Run Mine. The Board echoes Ameren's comments to the effect that Ameren must take all steps necessary to ensure that its discharges into Coffeen Lake meet the conditions of the modification granted today, no matter what conditions may result at Coffeen Lake due to actions of others.

Ameren's experts have adequately addressed the issues of phosphorus and mercury loading, and habitat erosion. Ameren's current, and promised future, use of solar-powered aerators, to some extent addresses the query about use of aeration to improve oxygen demand. The Board does not discount the concern that major corporations should be asked to "do better", but reminds that Ameren is also being required to expend resources to meet stricter air pollution control standards, and that ratepayers typically must shoulder some of these costs.

CONCLUSION

Based on the record before it, the Board finds that Ameren has provided adequate proof that the Coffeen Lake artificial cooling lake receiving the heated effluent from Coffeen Power Station will be environmentally acceptable and within the intent of the Act, including: (A) provision of conditions capable of supporting shellfish, fish and wildlife, and recreational uses consistent with good management practices; and (B) control of the thermal component of the discharger's effluent by a technologically feasible and economically reasonable method. 35 Ill. Adm. Code 106.202(b)(1), 302.211(j)(3). The Board grants Ameren's requested relief subject to conditions outlined in this order, effective today.

This opinion constitutes the Board's findings of fact and conclusions of law.

<u>ORDER</u>

- 1. The thermal discharge to Coffeen Lake from Ameren Energy Generating Company's Coffeen Power Station, located in Montgomery County, shall not result in a temperature, measured at the outside edge of the mixing zone in Coffeen Lake, which:
 - A. Exceeds 105 degrees Fahrenheit as a monthly average, from June through September, and a 112 degrees Fahrenheit as a maximum for more than three percent of the hours during that same period.
 - B. Exceeds 89 degrees Fahrenheit as a monthly average, from November through April, and 94 degrees Fahrenheit as a maximum for more than two percent of the hours during that same period.

- C. Exceeds 96 degrees Fahrenheit as a monthly average, in each of the months of May and October, and 102 degrees Fahrenheit as a maximum for more than two percent of the hours in each of those same months.
- 2. Ameren must monitor Coffeen Lake during the period May through October for fish mortality. In the event excessive fish mortality occurs during these months, Ameren shall implement appropriate mitigation measures including the following:
 - A.. Notify the Illinois Department of Natural Resources (IDNR) immediately;
 - B. Maximize operation of the cooling basin and existing cooling towers to reduce thermal temperatures;
 - C. Make operation revisions to the station's typical dispatch order (*e.g.* "last on and first off");
 - D. Reduce nighttime capacity factors;
 - E. Monitor intake and discharge temperatures and visually inspect intake and discharge areas; and
 - R. No later than November 15 of each year, document mitigation measures employed during periods of excessive fish mortality.
- Pursuant to 35 Ill. Adm. Code 302.211(j)(1), all discharges from Coffeen Lake to other waters of the State must comply with the applicable provisions of 35 Ill. Adm. Code 302.211(b) through (e).
- 4. Pursuant to 35 Ill. Adm. Code 302.211(j)(2), the heated effluent discharged to Lake Coffeen must comply with all applicable provisions of 35 Ill. Adm. Code Subtitle C, Chapter I, except 35 Ill. Adm. Code 302.211(b) through (e).
- 5. The Agency must expeditiously modify Ameren's NPDES permit consistent with the foregoing opinion and order.

IT IS SO ORDERED.

e

Member C.K. Zalewski abstained.

Section 41(a) of the Environmental Protection Act provides that final Board orders may be appealed directly to the Illinois Appellate Court within 35 days after the Board serves the order. 415 ILCS 5/41(a) (2008); *see also* 35 Ill. Adm. Code 101.300(d)(2), 101.906, 102.706. Illinois Supreme Court Rule 335 establishes filing requirements that apply when the Illinois Appellate Court, by statute, directly reviews administrative orders. 172 Ill. 2d R. 335. The Board's procedural rules provide that motions for the Board to reconsider or modify its final orders may be filed with the Board within 35 days after the order is received. 35 Ill. Adm. Code 101.520; *see also* 35 Ill. Adm. Code 101.902, 102.700, 102.702.

I, John T. Therriault, Assistant Clerk of the Illinois Pollution Control Board, certify that the Board adopted the above opinion and order on March 18, 2010, by a vote of 4-0, Member Zalewski abstained.

In T. Therian

John T. Therriault, Assistant Clerk Illinois Pollution Control Board

-10

£

iepa exhibit

WITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

OCT 0 6 2011

REPLY TO THE ATTENTION OF: WN-161

Marcia T. Willhite Chief, Bureau of Water Illinois Environmental Protection Agency Post Office Box 19276 Springfield, Illinois 62794-9276

RECEIVED OCT 13 2011 BUREAU OF WATER BUREAU CHIEFS OFF

Sanjay al

Connie Roger C Bol Mosher

Re: Ameren Coffeen Power Station NPDES Permit No. IL0000108

Dear Ms. Willhite:

We have reviewed the information submitted to the U.S. Environmental Protection Agency pursuant to 40 C.F.R. §123.44(d)(2) for the proposed permit modification for the Coffeen Power Station. The studies available for Coffeen Lake provide a comprehensive analysis of the biological community and the impacts from the Coffeen Power Station. However, we have significant concerns regarding the process for granting thermal relief by the Illinois Pollution Control Board (IPCB) and Illinois Environmental Protection Agency (Illinois EPA). An enclosure to this letter provides specific details and recommends actions to resolve our concerns. The current permit expires in January 2013 and we encourage Illinois EPA, the IPCB and Ameren to address these issues prior to the reissuance of the permit. We do not, however, believe it is necessary to object to the permit modification at this time. If any clarification from EPA is necessary, do not hesitate to contact us for assistance.

Based on our review of the available information, EPA will not object to the permit modification as drafted.

If you have any questions, please contact Sean Ramach at (312) 886-5284.

Sincerely,

Tinka G. Hyde Director, Water Division

cc: Mr. G. Tanner Girard Acting Chairman, Illinois Pollution Control Board

> Mr. John Pozzo Supervising Engineer, Ameren Energy

> > Recycled/Recyclable • Printed with Vegetable Oil Based Inks on 100% Recycled Paper (50% Postconsumer)

Summary of EPA's Review of the Ameren Coffeen Power Station Thermal Relief Demonstration

EPA has identified the following issues that should be clarified prior to the permit's expiration date in January 2013 in order to ensure that when the permit is reissued, it is consistent with the Clean Water Act (CWA).

- 1) CWA § 316(a) allows for alternative effluent limitations to effluent limitations based on water quality standards developed for the permit when it is demonstrated that the protection and propagation of shellfish, fish and wildlife in and on the waterbody is assured. The Illinois Administrative Code (IAC) at 35 IAC § 304.141(c) authorizes the implementation of CWA § 316(a) alternative effluent limitations in National Pollutant Discharge Elimination System (NPDES) permits. Illinois Environmental Protection Agency (IEPA) has indicated that the relief granted by the Illinois Pollution Control Board (IPCB) to the Ameren Coffeen Power Station is a CWA § 316(a) alternative limitation. However, the IAC provision referenced in granting the relief is 35 IAC § 302.211(j), which provides for alternate thermal standards for artificial cooling lakes. In its March 18, 2010 opinion and order, the IPCB indicates that this regulation is consistent with CWA § 316(a), but as discussed below, this regulation does not appear to authorize thermal relief consistent with CWA § 316(a).
 - a) 35 IAC § 302.211(j) was established in 1975. Rulemaking development by the IPCB is described in <u>Water Quality and Effluent Standards Amendments</u>, Cooling Lakes, <u>R75-2</u>, (Sept. 29, 1975). A number of excerpts from that document, as provided below, indicate that 35 IAC § 302.211(j) was not meant to be an authorizing regulation for a CWA § 316(a) variance. As stated by the IPCB:

the word "alternate" was changed to reflect the difference between the specific thermal standards to be set under this Regulation, and an alternate thermal standard to be set pursuant to §316(a) of the FWPCA. *Slip op. at 42*.

(On July 31, 1975, the Board did grant a two year Variance of "specific standards" for Lake Clinton.) While this was intended by the Agency to eliminate unnecessary duplication of effort by Illinois Power, the Board felt that the statutory requirements for Variances and those for regulatory amendments were not sufficiently similar to allow this as a "grandfather" vehicle. It was questionable whether, 1) the public hearing requirements for a Regulation could properly be fulfilled by the Variance hearings, and 2) because a Variance is designed to grant temporary relief from the general rules, and is conditioned on efforts to achieve compliance with those general rules, it was not clear that temporary approval of a thermal effluent under those conditions would be legally sufficient to justify the permanent imposition of the same standard. *Slip op. at 42*

mpri it.

b) Additionally, in the variance proceeding <u>Illinois Power Company v. EPA</u>, PCB 75-31, the Board stated:

> First, Illinois Power shall, and has, participated in a pending regulatory proceeding before the Board which would, if successful, provide a means by which it could obtain the equivalent of a permanent variance, which is presently unobtainable. In the Matter of Cooling Lakes, R75-2. Should that Regulatory Proposal, or the alternatives suggested by IEPA, be adopted by the Board, Illinois Power could be granted a specific thermal effluent limitation; such a specific limitation would provide permanent relief (subject, of course, to future Board actions, such as those provided for under Ch. 3, Rule 203(i) (5)), by granting a thermal standard exceeding the generally applicable one of Rule 203 (i). Second, the Board would hope that federal approval of the Board's NPDES regulations is imminent. Such approval would cause Rule 410(c) of the Water Pollution Regulations to provide for just such specific, long-term relief as Illinois Power would require. Rule 410(c), by adopting the federal standard under Sec. 316(a) of the FWPCA, provides for the adoption by the Board of an alternate thermal standard such as is requested by Illinois Power." Slip op. at 14.

A 316(a) alternate thermal limitation is a variance and not a permanent limitation. The alternate limitation is renewed with the reissuance of each NPDES permit based upon additional studies reflecting actual operating experience as required by the permitting authority. These excerpts clearly indicate that the IPCB did not consider 35 IAC § 302.211(j) to be the equivalent of 316(a). Relief granted under 35 IAC § 302.211(j) is intended to be permanent, consistent with an adjustment to water quality standards. It is also clear that the thermal standard under 35 IAC § 302.211(j) is applicable to the artificial cooling lake, not the specific discharger into that artificial cooling lake. Even presuming that an artificial cooling lake would typically only have one authorized discharger, it is clear that the standards are intended to be set for the artificial cooling lake, not the discharger specifically (See discussion of standards for Lake Clinton and Sangchris in R75-2, slip op. at pp25-35).

c) In its March 18, 2010 opinion and order, the IPCB indicates that Ameren asserts as a basis for seeking relief that compliance with the existing standards is technically infeasible or unreasonably cost-prohibitive. While the petition and order also address the environmental impacts of the discharge, the federal statute and regulation do not allow consideration of technical or economic factors in making a Clean Water Act § 316(a) determination. While there is nothing to preclude the state from requiring such a demonstration in addition to the Clean Water Act § 316(a) demonstration, it should be made clear that economic and technical considerations are not relevant to the Clean Water Act 316(a) determination, which is limited to the factors set out in the CWA and its implementing regulations.

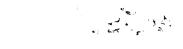
d) The March 18, 2010 order on page 7 in foot note 9 states:

Section 316(a) of the CWA and 40 CFR 125 Subpart H address alternate thermal limitations in terms of effluent standards. Although the Board's rule for ACL demonstrations provides for the use of a Section 316(a) showing, the demonstration required under the Board's Section 302.211(j)(3) is for water quality standards that apply at the outside edge of the mixing zone in the artificial cooling lake and not as effluent limits (emphasis added).

This footnote indicates that the demonstration under 35 IAC § 302.211(j) is for water quality standards, not effluent limitations. This raises uncertainty as to whether the relief provided under this provision is granted under § 316(a). Additionally, if the water quality standard is what is being modified, then the variance or site specific criterion must be submitted to EPA for approval before effluent limitations may be included in a permit based upon the variance or criterion.

Based on this information, EPA recommends that IEPA and the IPCB determine whether 35 IAC § 302.211(j) does in fact authorize Clean Water Act § 316(a) alternate effluent limitations, in addition to 35 IAC § 304.141(c), or if it is instead a procedure to modify water quality standards for a receiving water body. If it is the latter, changes to water quality standards require approval by EPA before effluent limitations based on the variance or site specific criterion can be included in NPDES permits. EPA is aware that there are numerous artificial cooling lakes in Illinois, and understands that any decision will have impacts beyond this specific permit issuance.

2) In reviewing the biological studies submitted to support the request for alternative limitations, EPA has concerns regarding potential adverse impacts to lower trophic levels due to the proposed alternate limitations. The current Representative and Important Species (RIS) list only addresses higher trophic level organisms. While the biological reports did a sufficient job in demonstrating that past thermal discharges did not appear to have an adverse impact on the entire community, EPA remains concerned that the increase in temperature may cause impacts to the forage species due to 1) potential change in spawning behavior due to change in the thermal regime and 2) increased predation at significant life stages due to earlier spawning and increased growth by the top predators and forage species due to the change in temperature regime. The biological reports indicate a potential trend of decreasing biomass in the RIS species. However, the demonstration or prediction regarding impact to the lower trophic levels. The demonstration only indicated that the RIS species would not be harmed from the temperature changes in May and October.
3: SPECCECE EPA believes that such analysis is necessary to demonstrate that a balanced and indigenous


EPA believes that such analysis is necessary to demonstrate that a balanced and indigenous community, not just those species that are important from a recreational use aspect, is being protected and propagated in compliance with the CWA.

· · · · · ·

Enclosure: September 2011 Letter to Marcia T. Wilhite in regards to Ameren Coffeen Power Station

wet the

- 3) When a discharger submits a permit application for the reissuance of its NPDES permit, 40 C.F. R. §122.21(m) requires that a request for a CWA § 316(a) variance must be filed as well. 40 C.F.R. §125.72 states that only such information as the Director requests must be submitted with that request, but that the permittee should be prepared with studies to support the continuation of the variance. We have expressed reservations that the thermal relief granted under 35 IAC § 302.211(j) is in accordance with CWA § 316(a). It is also not clear that the Board has reviewed and approved the 316(a) variance at each permit reissuance as would be required by federal regulations, if the relief is indeed authorized under Section 316(a). This obligation is applicable to any 316(a) alternate limitation included in any NPDES permit.
- 4) Additionally, we note that a "provisional variance" was granted to the permittee on October 24, 2007 by IEPA for a 45 day period. Based on our review of the statutes authorizing this relief, as well as the rationale set out in support of the relief, we believe that the "provisional variance" was a change to water quality standards. We have no record of this "provisional variance" being submitted to EPA for review nor are we aware of any public notice or modification of the NPDES permit to allow implementation of this relief. We ask that you clarify this process and under what authorities the relief is granted in order to ensure that this practice is consistent with the Clean Water Act, and that appropriate EPA approval and public notice is conducted.

.

•

d

1 +>-

ŕ

R 054

IEPA EXHIB 4

Ameren Services

July 27, 2012

CERTIFIED MAIL: 7011 3500 0001 1068 0728

Mr. Darin LeCrone Industrial Unit Manager Division of Water Pollution Controi Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY BOW/WPC/PERMIT SECTION

Dear Mr. LeCrone:

RE: Ameren Energy Generating Company – Coffeen Power Station NPDES Permit Renewal Application NPDES Permit IL0000108

In accordance with State and Federal regulations, enclosed is a renewal application with original signatures and a copy of the same for the Ameren Energy Generating Company – Coffeen Power Station, NPDES Permit IL0000108. We believe that this timely application is complete, with all required forms, signatures, and drawings.

This renewal application also includes a set of Attachments that provide additional details regarding information required in the application forms and specific permit revision requests.

Please contact me at 314-554-4581 if there are any questions regarding this permit renewal application.

Sincerely,

Michael J. Smał/wood Consulting Environmental Engineer

Enclosures

lease print cr t	ype in the unshad	ed areas only.					Form Approved, OMB No. 2040-9	Nr3	-4	776-
FORM		U.S. ENVIRC				ON AGENCY	I. EPA I.D. NUMBER			
1	SEPA				FORMA1 ermits Prog		s F IL0000108		\vdash	T/A C
GENERAL			Generc	al Instr	uctions" befo	re stanting.)			13	14 15
LABE	LITEMS	IL0000108			-	· ;	GENERAL INSTRUC	rovided	, affix	
EPA I.D.	NUMBER	Ameren Energy			rces Co	mpany, LLC	designated space. Review the information is incorrect, cross through it and enter appropriate fill-in area below. Also, if a	er the c	correct c	tata in the
FACILITY		Coffeen Power S	Stati	ion		1	is absent (the area to the left of t information that should appear), pleas	the labe	el space	e lists the
	/ MAILING	134 CIPS Lane	-				fill-in area(s) below. If the label is connect not complete Items I, III, V, ar	omplete	and co	orrect, you
ADDRES		Coffeen IL 6201					must be completed regardless). Com has been provided, Refer to the inst	piete al	ll items	if no label
FACILIT	LOCATION	Montgomery Co	unty	/			descriptions and for the legal author data is collected.	izations	under	which this
POLLUTAN	CHARACTERIS	TICS								
ubmit this for ou answer "n	m and the supple o" to each questic	mental form listed in the pare	nthesi f these	s follo e form:	wing the qu s. You may	estion. Mark "X" in the box ir answer "no" if your activity is	the EPA. If you answer "yes" to an the third column if the supplemen excluded from permit requirements	tal forr	n is at	tached. If
	SPECIFIC QU	JESTIONS	YES	Marl NO	FORM ATTACHED	SPECIFI	CQUESTIONS	YES	Mark NO	FORM
		ned treatment works which		\sim			ty (either existing or proposed)		$\overline{\mathbf{x}}$	
results in a	uischarge to wat	ers of the U.S.? (FORM 2A)	L			aquatic animal produc	animal feeding operation or tion facility which results in a		X	
Is this a fa	cility which curren	ntly results in discharges to	16	17	18	D. Is this a proposed facility	the U.S.? (FORM 2B) (other than those described in A	19	20	21
	he U.S. other the	an those described in A or B	X				esult in a discharge to waters of		X	
· · · · · · · · · · · · · · · · · · ·		treat, store, or dispose of	22	23	24		ject at this facility industrial or	25	26	27
	wastes? (FORM			X	l	municipal effluent b	elow the lowermost stratum guarter mile of the well bore,		X	
			28	29	30		drinking water? (FORM 4)	31	32	33
		is facility any produced water brought to the surface in					t at this facility fluids for special of sulfur by the Frasch process,			
		oil or natural gas production, ed recovery of oil or natural		X			erals, in situ combustion of fossil nermal energy? (FORM 4)		$ \times $	
gas, or inje		age of liquid hydrocarbons?								
(FORM 4)	ty a proposed sta	tionary source which is one	34	35	36	I is this facility a propo	sed stationary source which is	37	38	39
of the 28 in	dustrial categorie	s listed in the instructions and 00 tons per year of any air		X		NOT one of the 28 in	ndustrial categories listed in the will potentially emit 250 tons per		X	
pollutant re	gulated under the	Clean Air Act and may affect		41	42	year of any air pollutant	regulated under the Clean Air Act located in an attainment area?		44	45
or be locate	su in an attainmer	nt area? (FORM 5)				(FORM 5)	located in an attainment area?			
	FACILITY									
	meren Ene	rgy Resources C	ompa	any.	LLC	- Coffeen Power	Station	1.		
5 16 - 29 30			the state of the	and states				69		
V. FACILITY	CONTACT	A. NAME & TITLE (las	a first	& title	,) ,)		B. PHONE (area code & no.)			
		- Managing Supe			í		314-554-2280			
2 POZZO 5 16	, 00111 C.	- Managing Supe		.5111	<u> </u>	45	46 48 49 51 52-	55 Pi		
	AILING ADDRES	S								
		A. STREET OR F	P.O. B	ox	, , , , , , , , , , , , , , , , , , , 					
PO Bo	x 66149, I	MC-602, 1901 Cho	oute	au	Avenue					
5 16						45	1			
c		B. CITY OR TOWN	$\overline{\mathbf{T}}$			C. STATE				
st.'L	óuis i					MO	63166			
5 16 /L FACILIT			61040		an spiral.	40 41 42	47 51			
		TREET, ROUTE NO. OR OTH	IER SI	PECIF	IC IDENTIF	IER			SALAN SALAN	
<u>c</u> 5 134 C	IPS Lane									
15 16							5			
		B. COUN	TY NA	ME						
Montgon	ierý '	, , , , , , , , , , , , , , , , , , ,			· · ·	- I I I I I				
40 		C. CITY OR TOWN				D. STATE	E. ZIP CODE F. COUNTY	CODE	(if kno	<u>พฑ) (</u>
Coffe	en						62017			
15 16						40 41 42	47 51 52	-54	L	1883

EPA Form 3510-1 (8-90)

CONTINUE ON REVERSE

CONTINUED FROM THE F

CONTINUED FROM THE FRONT					
VII. SIC CODES (4-digit, in order of priority) A. FIRST				B. SECOND	
c ! [] (specify) 7 4911 Electric Services		c (spe	ecify)		
15 16 - 19		15 16 - 19			
C. THIRD		C (sn		D. FOURTH	
$\frac{c}{7}$		7 (spe	ecify)		
15 16 - 19		15 16 - 19			
VIII. OPERATOR INFORMATION	A. NAME				B.Is the name listed in Item
			1 1 1 1		VIII-A also the owner?
8 Ameren Energy Resources Compan	цу, шьс				
C. STATUS OF OPERATOR (Enter the	appropriate letter into th	e answer bor: if "Othe	r " specify)		D. PHONE (area code & no.)
		specify)	ar, specify.)		
S = STATE M = PUBLIC (other than jed	ieral or state) P	1 557			A
P = PRIVATE	56				15 6 - 18 19 - 21 22 - 26
E. STREET OR P.O.	BOX				
PÒ Box 66149, MC-602, 1901 Chout	_eau Avenue				
		·	55		
					NDIAN LAND facility located on Indian lands?
B St. Louis			MO 63	3166 0	YES IN NO
15 16		40	41 42 47	- 51	
X. EXISTING ENVIRONMENTAL PERMITS				The second second second second	
A. NPDES (Discharges to Surface Water)	D. PSD (Air I	Emissions from Propos	ed Sources)		
9 N IL0000108	9 P				
15 16 17 18 30				30	
B. UIC (Underground Injection of Fluids)			E. OTHER	(specify)	
	<u>ст</u> 9 2008-1	EA-4661-3	1 1 1 1	(specify)	
	9 15 16 17 18		•		Pollution Control
C. RCRA (Hazardous Wastes)			E. OTHER		
	<u>c T </u> 9 13580:	 הההכ		(specify)	
9 R					r Permit ID
15 16 17 18 XI. MAP	15 16 17 18			30	
Attach to this application a topographic map of the area e	extending to at least or	e mile bevond prop	erty boundaries	s. The map must :	show the outline of the facility, the
location of each of its existing and proposed intake and dis	charge structures, eac	h of its hazardous w	aste treatment,	storage, or dispos	sal facilities, and each well where it
injects fluids underground. Include all springs, rivers, and oth	her surface water bodie	es in the map area. S	See instructions	for precise require	ments.
XII. NATURE OF BUSINESS (provide a brief description)					
Electrical Generation (steam electric)					
XIII. CERTIFICATION (see instructions)					
I certify under penalty of law that I have personally examin	ned and am familiar wi	th the information su	bmitted in this	application and all	attachments and that, based on my
inquiry of those persons immediately responsible for obtain	ning the information co	ntained in the applic	cation, I believe	that the information	
am aware that there are significant penalties for submitting			of tine and impri-	sonment.	
A. NAME & OFFICIAL TITLE (type or print) Michael L. Menne,	B. SIGNATU	IRE	\cap		C. DATE SIGNED
Vice President-Environmental Sv	r_{cs} \mathcal{I}	イロタート	plen		07/25/12
	//	ution 1	1 jach		01///-
COMMENTS FOR OFFICIAL USE ONLY				en e	
С					
15 16					55 Literary statistic several residence in the statistic

EPA Form 3510-1 (8-90)

EPA I.D. NUMBE	२ (copy from Item	1	of Form	I)

	1
IL0000108	

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

FORM 2C												
	L LOCATION	FREEZE	NE DE MARIE				Son Son dated	r onnito r rogrant	e contrata			
		asir Smith Autor Shirt	longitude of it	s location to t	he nearest 15	5 seconds and	the name of	the receiving water.				
	LL NUMBER		B. LATITUDE			LONGITUD			·······			
	list)	1. DEG.	2, MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATER	(name)			
001		39	03	36	89	23	28	Coffeen Lake				
020		39	03	34	89	23	28	Coffeen Lake				
021		39	03	37	89	23	25	Coffeen Lake				
022		39	03	31	89	23	23	Coffeen Lake				
II. FLOWS	, SOURCES	OF POLLUTI	ON, AND TR	EATMENT T	MENT TECHNOLOGIES							
labelec treatme source	Attach a line drawing showing the water flow through the facility. Indicate sources of intake water, operations contributing wastewater to the effluent, and treatment units labeled to correspond to the more detailed descriptions in Item B. Construct a water balance on the line drawing by showing average flows between intakes, operations, treatment units, and outfalls. If a water balance cannot be determined (e.g., for certain mining activities), provide a pictorial description of the nature and amount of any sources of water and any collection or treatment measures. B. For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, including process wastewater.											
	orm water ru							ment received by the wastewater. Continu				
1. OUT-		2. OPEF	RATION(S) CO		IG FLOW			3. TREATMENT				
FALL NO. (<i>list</i>)	a.	OPERATION	N (list)	b	b. AVERAGE FLOW (include units)			a. DESCRIPTION	b. LIST CODES FROM TABLE 2C-1			
001			r Discharge	0.	13 MGD		Discharge 1	to Surface Water	4-A			
001	Flume											
020	Condenser C	ooling Wate	r Diversion	359.	83 MGD		Discharge	to Surface Water	4 - A			
	Channel C	verflow						,				
021	Supplementa	l Cooling H	Pond Dischar	ge 68.	68.85 MGD			to Surface Water	4-A			
022			fower Discha	rge 66.	66.17 MGD			to Surface Water	4-A			
	CONTRIBUTIN	IG FLOWS:										
	Condenser	Cooling Wat	ter Discharg	e			None (non=	contact cooling)				
	Boiler Dra	aining Waste	ewater	0.	075 MGD		None					
	Misc. Heat	Exchanger	Cooling Wat	er 48.	0 MGD			contact cooling)				
	Raw Water	Treatment a	and	0.	390 MGD		Mixing		1-0			
	Deminera	alizer Regen	nerant Waste									
	Unit 1 Flo	oor & Equip	ment Drains	Int	ermittent	·	Mixing, se	paration	1-0			
		·····	nt Effluent	0	0085 MGD			sludge, Sand filtration	3 - A	1-V		
			ment Drains		ermittent	and the second	Mixing, se	paration	1-0			
			pass Dischar	In	ermittent							
	L		/Water Separ	In In	cermittent	·						
		h Pond SW C		In	termittent							
		h Pond SE C		In	termittent							
		er Runoff (termittent			<u>, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>				
			Area Drains	In In	termittent							
	Emergency	Recycle Po	ond Overflow	In	termittent			·				
			· · · · · · · · · · · · · · · · · · ·									
OFFICIA		(aff)	Jalina!									
I OFFICIA	L USE UNLY	(ejjiuent guid	lelines sub-cate	somes)				· · ·				

EPA Form 3510-2C (8-90)

EPA I.D.	NUMBER	(copy from	Item I	of Form	I)
	~ T	0 0 0 0 1 0	~		

.

IL0000108

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

FORM 2C NPDES	C SERA APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS Consolidated Permits Program									
	LOCATION	Liter Calific and Science (2)								
								the receiving water.		
	L NUMBER	1. DEG.	B. LATITUDE	3. SEC.	1. DEG.	2. MIN,	E 3. SEC.	D. RECEIVING WATE	ER (name)	
A01		39	03	34	89	23	28	Coffeen Lake		
B01		39	03	34	89	23	28	Coffeen Lake		
C01		39	03	34	89	23	28	Coffeen Lake		
D01		39	03	34	89	23	28	Coffeen Lake		
E01		39	03	34	89	23	28	Coffeen Lake		
II. FLOWS,	SOURCES	OF POLLUTI	ON, AND TRI	EATMENT T	ECHNOLOGI	ES				
labeled treatme sources B. For ead	to correspor ent units, and s of water and ch outfall, pro orm water ru	nd to the mor l outfalls. If a d any collecti ovide a desci	e detailed des water balance on or treatme ription of: (1)	criptions in li e cannot be o nt measures. All operation	tem B. Constr determined (e	ruct a water b e.g., for certain wastewater	alance on the <i>mining active</i> to the effluent	perations contributing wastewater to the line drawing by showing average flows b <i>ities</i>), provide a pictorial description of th , including process wastewater, sanitary nent received by the wastewater. Conti	etween intakes, e nature and arr wastewater, co	operations, ount of any oling water,
		2 OPEF	RATION(S) CO					3. TREATMENT		
1. OUT- FALL		2. 01 L1			AVERAGE	LOW			b. LIST CO	DES FROM
NO. (list)		OPERATION			(include uni	ts)	None.	a. DESCRIPTION	TABLE	E 2C-1
A01					36 MGD					
								······································		
B01	Raw Water	Treatment a	ind	0.0	018 MGD		Mixing.		1-0	
201	Demineral	lizer Regene	erant Wastes							
	Chemical (Containment	Area Drains	Int	ermittent					
							Niving Co			
C01		oor Drains a		Int	ermittent		Mixing, Se		1-0	
	Storm wat				ermittent					
				Int	ermittent		<u> </u>			
	Sewage Tr	eatment Pla	nt Effluent		168 MGD		Activated	Sludge, Sand Filtration	3-A	1-V
D01					108 MGD					1
							·			+
E01	Unit 2 Fl	oor Drains	& Sumps	In	cermittent		Mixing, Se	paration	1-0	<u> </u>
	Floor dra	ins & sump	discharges	In	cermittent	· · ·		······································		
	Storm wat	er runoff		In	termittent					
				·		- · ·				
OFFICIA	L USE ONLY	((effluent guid	lelines sub-cate	egories)						

CONTINUE ON REVERSE

EPA I.I	D.	NUMBI	ER	(0	oj	ηy.	fra	m	Item	1	of .	Form	1)
		_			_								

IL0000108

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

FORM 2C	U.S. ENVIRONMENTAL PROTECTION AGENCY APPLICATION FOR PERMIT TO DISCHARGE WASTEWATER EXISTING MANUFACTURING, COMMERCIAL, MINING AND SILVICULTURE OPERATIONS Consolidated Permits Program											
NPDES								r onnio Erogiani	an a			
	L LOCATION	Calify of the same of the	longitude of its	Location to t	the pagrest 14	5 seconds and	the name of	the receiving water.				
	L NUMBER		B. LATITUDE			LONGITUD		the receiving water.				
	ist)	1. DEG.	2. MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATE	R (name)			
F01	-	39	03	34	89	23	28	Coffeen Lake				
G01	-	39	03	34	89	23	28	Coffeen Lake				
H01		39	03	34	89	23	28	Coffeen Lake				
I01		39	03	34	89	23	28	Coffeen Lake				
					IENT TECHNOLOGIES							
labeled treatme source:	to correspor ent units, and s of water an	nd to the more outfalls. If a d any collecti	e detailed des water balance on or treatmer	criptions in l cannot be nt measures.	tem B. Constr determined (e	ruct a water b a.g., for certai	alance on the n mining activ	perations contributing wastewater to the e- line drawing by showing average flows b- ities), provide a pictorial description of the	etween intakes, a nature and am	operations, ount of any		
and sto	For each outfall, provide a description of: (1) All operations contributing wastewater to the effluent, including process wastewater, sanitary wastewater, cooling water, and storm water runoff; (2) The average flow contributed by each operation; and (3) The treatment received by the wastewater. Continue on additional sheets if necessary.											
1. OUT-	1. OUT- 2. OPERATION(S) CONTRIBUTING FLOW 3. TREATMENT											
FALL NO. (list)	a	OPERATION	N (list)	b	. AVERAGE I (include uni			a. DESCRIPTION	b. LIST COL TABLE			
F01	Maintenance Shop Oil/Water Separa			or In	termittent		Separation					
TOT								<u></u>				
						- 						
G01			ass Discharge	i In	termittent			ېرىرىمى يېرىمى يېرى				
	Chemical co	ontainment d	lrains	Ir	termittent							
H01	Closed Ash	Pond SW Cor	rner Storm	Ir	itermittent							
	Water Ru	noff										
IOI	Closed Ash	Pond SE Co	rner Storm	I	ntermittent							
	Water Ru	noff										
		. <u></u> tusuu u										
							-					
							-	,				
									-			
OFFICIA	L USE ONLY	((effluent guid	delines sub-cate	egories)								

EPA I.D. NUMBER (copy from Item	l of Form	I)
TL0000108		

Please print or type in the unshaded group

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98

lease phil	t of type in the	e unsnaueu	aleas only.					Approval expires	-31-90.	
FORM 2C NPDES	€E	PA		EXISTING		PLICATION F TURING, CO	OR PERMIT	PROTECTION AGENCY TO DISCHARGE WASTEWATER L, MINING AND SILVICULTURE OF Permits Program	ERATIONS	
. OUTFALI	LOCATION									
For each o	utfall, list the	latitude and	longitude of it	s location to	the nearest 1	5 seconds and	d the name of	the receiving water.		anders free stratting for an and
A. OUTFAL	L NUMBER		B. LATITUDE		C	LONGITUD	E			
(1	ist)	1. DEG.	2. MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATE	र (name)	
002		39	03	16	89	24	19	Coffeen Lake		
003		39	03	36	89	24	18	Coffeen Lake		
008	}	39	03	16	89	23	56	Coffeen Lake		
II. FLOWS	SOURCES	OF POLLUTI	ION, AND TR	EATMENT T	ECHNOLOGI	ES				
labeled treatme source	to correspon ent units, and s of water and	d to the mor outfalls. If a I any collecti	e detailed de water balanc ion or treatme	scriptions in I e cannot be nt measures	tem B. Constr determined (e	ruct a water b e.g., for certai	alance on the n mining activ	perations contributing wastewater to the e line drawing by showing average flows be <i>ities</i>), provide a pictorial description of the t, including process wastewater, sanitary	etween intakes, nature and am	operations, nount of any
	orm water run							ment received by the wastewater. Contir		
1. OUT-		2. OPEF	RATION(S) C	ONTRIBUTIN	IG FLOW			3. TREATMENT		
FALL NO. (<i>list</i>)	a.	OPERATIO	N (list)	b	. AVERAGE I (include uni			a. DESCRIPTION		DES FROM E 2C-1
002	Coal Yard Settling Pond Discharge			0	.63 MGD		Discharge t Sedimentat:	to surface water,Mixing, ion	4-A	1-0
	Storm water runoff		I	ntermittent	······································			1-U		
	Raw water	treatment v	wastewater	c	.06 MGD					[
	Coal crush	er house su	ump discharg	e o	.42 MGD				1 1	
	Ash dewate	ring bin ov	verflows	I	ntermittent			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	Tractor sh	ed oil/wate	er separator	c	.005 MGD					
	Coal recov	ery pond et	ffluent	3	intermittent					
	Recycle Po	ond level co	ontrol	1	Intermittent					
	Ultrasonic	resin clea	aner backwas	h (.01 MGD			<u> </u>		
	Coal unloa	ding septi	c system		0.0002 MGD					1
	Fuel unloa	ding oil/w	ater separat	or	Intermittent					
	Tripper ro	oom floor d	rains		0.0003 MGD			, <u>, , , , , , , , , , , , , , , , , , </u>		1
	Limestone	runoff pon	d emergency		Intermittent			u ^{n i i} ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	overflow	4								
	Warehouse,	/maintenanc	e shop		Intermittent	:				1
	oil/wate	er separato	or							
003	Intake scr	een backwas	h.		0.07 MGD					
1										
								······································		
008	Storm Wate	r Runoff fr	rom Rail Spu	r	Intermitten	t.				
OFFICIA	L USE ONLY	(effluent guid	delines sub-cat	egories)				ny		

EPA Form 3510-2C (8-90)

•

CONTINUE ON REVERSE

EPA I.D.	NUMBER	(copy from	Item 1	of Form	l)

IL0000108

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

FORM								PROTECTION AGENCY			
2C	€ E	PA	1	EXISTING				TO DISCHARGE WASTEWATER L, MINING AND SILVICULTURE C	PERATIONS		
NPDES								Permits Program			
	LOCATION					94535					
	utfall, list the	······································	longitude of its B. LATITUDE	location to	r	5 seconds and C. LONGITUD		the receiving water.			
	ist)	1. DEG.	2. MIN,	3. SEC.	1. DEG.	2. MIN.	2. SEC.	D. RECEIVING WAT	ER (name)		
00	9	39	03	14	89	23	57	Coffeen Lake			
01	.0	39	03	12	89	23	57	Coffeen Lake			
01	.1	39	03	01	89	24	01	Coffeen Lake	offeen Lake		
01	.2	39	02	57	89	23	54	Coffeen Lake			
01	.3	39	02	39	89	23	41	Coffeen Lake			
			ON, AND TRE			and other Paralities and					
labeled treatme source	to corresponent units, and s of water and	d to the mor outfalls. If a any collecti	e detailed des water balance on or treatme	criptions in I cannot be nt measures	tem B. Consti determined (e	ruct a water b a.g., for certai	alance on the n mining activ	perations contributing wastewater to the line drawing by showing average flows <i>ities</i>), provide a pictorial description of th	between intakes, ne nature and am	operations, ount of any	
B. For ea and ste necess	orm water ru	noff; (2) The	average flow	All operation / contributed	s contributing I by each op	eration; and	to the effluen (3) The treat	t, including process wastewater, sanitan nent received by the wastewater. Cont	/ wastewater, coo	oling water, al sheets if	
1. OUT-		2. OPEF	RATION(S) CO					3. TREATMENT			
FALL NO. (<i>list</i>)	a.	OPERATION	N (list)	b	. AVERAGE I (include uni			a. DESCRIPTION	b. LIST COI TABLE	DES FROM E 2C-1	
009	Storm Water	Runoff fro	om Rail Spur	I	ntermittent		Discharge t	to surface water	4-A		
010	Storm Water	Runoff fro	om Rail Spur	I	Intermittent		Discharge	to surface water	4 - A		
	Storm Water	- Runoff fr	om Rail Spur				Discharge	to surface water			
011					Intermittent				4-A		
			<u></u>							1	
012	Storm Water	r Runoff fre	om Rail Spur		Intermittent		Discharge	to surface water	4-A		
012										<u> </u>	
							-			+	
013	Storm Wate:	r Runoff fr	om Rail Spur		Intermittent		Discharge	to surface water	4-A		
					······					1	
OFFICIA	L USE ONLY	(effluent guic	lelines sub-cate	gories)							

EPA I.D. NUMBER	(copy from Item 1	of Form 1)

JWREK (copy from	n Item	I of F
ILC	0001	8	

Form Approved. OMB No. 2040-0086. Approval expires 3-31-98.

	it of type in the	s unshaueu i	aleas only.	l				Approval expires 3-	-51-50.	
FORM 2C NPDES	€E	PA		EXISTING		PLICATION F	OR PERMIT T	PROTECTION AGENCY ODISCHARGE WASTEWATER L, MINING AND SILVICULTURE OP Permits Program	ERATIONS	
		atitude and	longitude of it	s location to	the nearest 15	seconds and	the name of	the receiving water.		
	LL NUMBER		B. LATITUDE			. LONGITUD			·····	
(1	list)	1. DEG.	2. MIN.	3. SEC.	1. DEG.	2. MIN.	3. SEC.	D. RECEIVING WATER	(name)	
01	L4	39	02	36	89	23	38	Coffeen Lake		
01	L5	39	03	19	89	24	02	Coffeen Lake		
01	16	39	03	39	89	24	24 18 Coffeen Lake			
01	18	39	03	55	89	24	12	Coffeen Lake		
II. FLOWS	, SOURCES C	OF POLLUTI	ON, AND TR	EATMENT T	ECHNOLOGI	ES				
labelec treatme source B. For ea	to correspond ent units, and s of water and ch outfall, pro	d to the more outfalls. If a l any collecti vide a desci	e detailed des water balanc on or treatme ription of: (1)	scriptions in I e cannot be nt measures All operation	tem B. Consti determined (e s contributing	ruct a water b e.g., for certain wastewater	alance on the n mining activ to the effluen	perations contributing wastewater to the eff line drawing by showing average flows bet <i>ities</i>), provide a pictorial description of the t, including process wastewater, sanitary w	ween intakes, nature and am vastewater, coo	operations, ount of any oling water,
and st necess		10ff; (2) The	e average flo	w contributed	by each op	eration; and	(3) The treat	ment received by the wastewater. Continu	ie on additiona	al sheets if
1. OUT-		2. OPEF	RATION(S) C		IG FLOW			3. TREATMENT		
FALL NO. (<i>list</i>)	a.	OPERATIO	N (list)	b	. AVERAGE I (include uni		a. DESCRIPTION DESCRIPTION TABLE 20			
014			om Rail Spur	I				co surface water	4-A	
015	Storm Water	Runoff fro	om Rail Spur		Intermittent		Discharge	to surface water	4-A	
016	Storm Water	Runoff fro	om Rail Spur		Intermittent		Discharge	to surface water	4 - A	
018	Storm Water				Intermittent		Discharge	to surface water, sedimentation	4 - A	1-U
	Combustic	on Byproduc	t Landfill							
										<u> </u>
					·					<u> </u>
	_								_	
									_	
OFFICIA	AL USE ONLY	(effluent guid	delines sub-cat	egories)						

CONTINUE ON REVERSE

CONTINUED FROM THE FRONT

.

C. Except for sto			•	he discharges	described in Ite			sonal?			
	YES (comple	ete the followi	ng table)		L	NO (go to Sec	tion III)				
					3. FRE	QUENCY		· · · ·	4. FLOW B. TOTAL	VOLUME	T
1. OUTFALL NUMBER (<i>list</i>)		CONTRIB	RATION(s) SUTING FLOW (list)		WEEK (specify average)	b. MONTHS PER YEAR (speci <u>f</u> v average)	a. FLOW RA 1. LONG TERM AVERAGE	TE (<i>in mgd</i>) 2. MAXIMUM DAILY	(<i>specify</i> w 1. LONG TERM AVERAGE	ith units)	C. DURATION (in days)
C01 E01	Unit 1 F Unit 2 F	loor & Equ loor & Equ	ipment Dra ipment Dra	ains ains	These flo	ws (Outfalls C	01 and E01) a	re typically r	outed to the F	ecycle Ponc	
021	Supplemer	ntal Cooli	ing Pond		7	6	37.97	265.25			1
022	Supplemer	ntal Cooli	ing Towers		7	6	85.35	265.25			1
001/020 021/022	Emergency	y Recycle	Pond Over:	flow	Normal o	verflow is to th	e coal yard so	ttling pond (putfall 002).		
021/022											
	DN NC										
A. Does an efflu	uent guidelin	e limitation p	promulgated b	y EPA under S	Section 304 of t	he Clean Water	r Act apply to yo	ur facility?			
\checkmark	· · · · · · · · · · · · · · · · · · ·	lete Item III-B	<u> </u>			NO (go to Se					
B. Are the limita		applicable ef lete Item III-C	-	ne expressed i	n terms of proc	Luction (or other \overline{V} NO (go to Se	r measure of ope ction IV)	eration)?			
	ered "yes" to	Item III-B, I	ist the quanti		sents an actua		of your level of	production, ex	pressed in the	terms and un	its used in the
applicable e	effluent guide	eline, and ind	licate the affe 1. AVE	RAGE DAILY	PRODUCTION	I.					
a. QUANTITY	PER DAY	b. UNITS	OF MEASUR	E	c. OPERATI	ON, PRODUCT		. AFFECTED OUTFALLS (list outfall numbers)			
						(specify)					
				l.							
IV. IMPROVEN	-2010										
treatment e	equipment or	practices or	any other er	vironmental pr	ograms which	may affect the o	on schedule for fischarges desc	ribed in this ap	plication? This	includes, but i	s not limited to,
permit cond		nistrative or		orders, enforce		nce schedule let	tters, stipulations	s, court orders	, and grant or lo	an conditions.	
1. IDENTIFIC	-			ECTED OUTF					1		LIANCE DATE
	EEMENT, E					3. BRIE	F DESCRIPTIO	N OF PROJE	J .		
			a. NO.	b. SOURCE OF	DISCHARGE		· · · · · · · · · · · · · · · · · · ·		a	REQUIRED	b. PROJECTED
							~				
							control program				
constructio	on.			·					indicate your a ichment H - E		
	MARK "X	" IF DESCRI	PTION OF A	DDITIONAL CO		GRAMS IS ATT	ACHED Proj	ects" for des	cription).		

EPA I.D. NUMBER (copy from Item 1 of Form 1)

IL0000108

CONTINUED FROM PAGE 2

V. INTAKE AND EFFLUENT CHARACTER	RISTICS		
NOTE: Tables V-A, V-B, and V	/-C are included on separate sheets number		
		tions, which you know or have reason to be re it to be present and report any analytical c	
1. POLLUTANT	2. SOURCE	1. POLLUTANT	2. SOURCE
Various metals including strontium, u	ranium, and vanadium may be presen	in coal ash in trace amounts.	
		tos removal and disposal activities are ants) and OSHA Standard 29CFR1910	
		Table B. Therefore any pollutants in the screen backwash water (Outfall 00	
With respect to chemicals used in th chemicals would be the Sewage Tre		(Chemical Usage). Note that the discl	large point for any laboratory
VI. POTENTIAL DISCHARGES NOT COV		you currently use or manufacture as an inter	mediate or final product or hyproduct?
YES (list all such pollutants		NO (go to Item VI-B)	nediate of fillar product of byproduct?
1			

EPA Form 3510-2C (8-90)

PAGE 3 of 4

CONTINUE ON REVERSE

CONTINUED FROM THE FRONT			
VII. BIOLOGICAL TOXICITY TESTING DATA			
Do you have any knowledge or reason to beli relation to your discharge within the last 3 year	eve that any biological test for acute or chronic toxicity ars?	y has been made on any of your disc	charges or on a receiving water in
YES (identify the test(s) and des		NO (go to Section VIII)	
	<u>, , , , , , , , , , , , , , , , , , , </u>	······································	
VIII. CONTRACT ANALYSIS INFORMATION			
	performed by a contract laboratory or consulting firm'	2	
each such laboratory or fin	nd telephone number of, and pollutants analyzed by, m below)	NO (go to Section IX)	
A. NAME	B. ADDRESS	C. TELEPHONE	D. POLLUTANTS ANALYZED
	1	(area code & no.)	(list)
PDC Laboratories, Inc.	PO Box 9071	(area code & no.) 309-692-9688	(list) All except Mercury, pH,
PDC Laboratories, Inc.	PO Box 9071 Peoria IL 61612-9071	(area code & no.) 309-692-9688	All except Mercury, pH, Total Residual Chlorine,
	Peoria IL 61612-9071	309-692-9688	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform.
PDC Laboratories, Inc. Microbac Laboraties, Inc.			All except Mercury, pH, Total Residual Chlorine,
	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc.	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive	309-692-9688 219-769-8378	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707	309-692-9688 219-769-8378 217-753-1148 rection or supervision in accordance	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION I certify under penalty of law that this docum qualified personnel properly gather and e	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707	309-692-9688 219-769-8378 217-753-1148 217-r53-1148 rection or supervision in accordance uiry of the person or persons who	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION I certify under penalty of law that this docu qualified personnel properly gather and e directly responsible for gathering the inform	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707	309-692-9688 219-769-8378 217-753-1148 217-r53-1148 rection or supervision in accordance uiry of the person or persons who knowledge and belief, true, accurate	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION I certify under penalty of law that this docu qualified personnel properly gather and e directly responsible for gathering the inform	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707 ment and all attachments were prepared under my du valuate the information submitted. Based on my incomention, the information submitted is, to the best of my	309-692-9688 219-769-8378 217-753-1148 217-r53-1148 rection or supervision in accordance uiry of the person or persons who knowledge and belief, true, accurate	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION I certify under penalty of law that this docu qualified personnel properly gather and e directly responsible for gathering the inform are significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print)	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707 ment and all attachments were prepared under my du valuate the information submitted. Based on my incomention, the information submitted is, to the best of my	309-692-9688 219-769-8378 217-753-1148 217-753-1148 rection or supervision in accordance uity of the person or persons who knowledge and belief, true, accurations.	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION I certify under penalty of law that this docu qualified personnel properly gather and e directly responsible for gathering the inform are significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print)	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707 ment and all attachments were prepared under my divaluate the information submitted. Based on my inc mation, the information submitted is, to the best of my e information, including the possibility of fine and impr	309-692-9688 219-769-8378 217-753-1148 217-753-1148 rection or supervision in accordance uiry of the person or persons who knowledge and belief, true, accuration isonment for knowing violations. B. PHONE NO. (area code & no.)	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.
Microbac Laboraties, Inc. Prairie Analytical Systems, Inc. IX. CERTIFICATION I certify under penalty of law that this docu qualified personnel properly gather and e directly responsible for gathering the inform are significant penalties for submitting false A. NAME & OFFICIAL TITLE (type or print) Michael L. Menne, Vice Presi	Peoria IL 61612-9071 250 West 84th Drive Merrillville IN 46410 1210 Capital Airport Drive Springfield IL 62707 ment and all attachments were prepared under my diveloate the information submitted. Based on my inc mation, the information submitted is, to the best of my a information, including the possibility of fine and impre- dent - Environmental Services	309-692-9688 219-769-8378 217-753-1148 217-753-1148 rection or supervision in accordance uity of the person or persons who knowledge and belief, true, accurat isonment for knowing violations. B. PHONE NO. (area code & no.) 314-554-2816	All except Mercury, pH, Total Residual Chlorine, and Fecal Coliform. Mercury. Fecal Coliform.

EPA Form 3510-2C (8-90)

PAGE 4 of 4

EPA ID Number (copy from Item 1 of Form 1) IL0000108

U.S. Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Storm Water **Discharges Associated with Industrial Activity**

Paperwork Reduction Act Notice

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information, or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Branch, PM-223, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

. Outfall Location									
For each outfall, list the	e latitude an	d longitude o	f its location t	o the nearest	15 seconds a	and the name	e of the receiving water.		
A. Outfall Number (<i>list</i>)					C. Longitude		D. Receiving Water (<i>nam</i> e)		
001	39	03	36	89	23	28	Coffeen Lake		
020	39	03	34	89	23	28	Coffeen Lake		
021	39	03	37	89	23	25	Coffeen Lake		
022	39	03	31	89	23	23	Coffeen Lake		
C01	39	03	34	89	23	28	Coffeen Lake via Outfalls 001/020/021/022		
E01	39	03	34	89	23	28	Coffeen Lake via Outfalls 001/020/021/022		
H01	39	03	34	89	23	28	Coffeen Lake via Outfalls 001/020/021/022		
101	39	03	34	89	23	28	Coffeen Lake via Outfalls 001/020/021/022		
002	39	03	16	89	24	19	Coffeen Lake		
008	39	03	16	89	23	56	Coffeen Lake		
I. Improvements									

Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

1. Identification of Conditions,		2. Affected Outfalls		4. Final Compliance Date		
Agreements, Etc.	number source of discharge		3. Brief Description of Project	a. req.	b. proj	
one.						
······································		······				
······································						
				······		
•						
					<u> </u>	

way or which you plan. Indicate whether each program is now under way or planned, and indicate your actual or planned schedules for construction.

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfalls(s) covered in the application if a topographic map is unavailable) depicting the facility including: each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage of disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of is hazardous waste treatment, storage or disposal units (including each area not required to have a RCRA permit which is used for accumulation hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which received storm water discharges from the facility.

EPA Form 3510-2F (1-92)

EPA ID Number (copy from Item 1 of Form 1) IL0000108

U.S. Environmental Protection Agency Washington, DC 20460

Application for Permit to Discharge Storm Water Discharges Associated with Industrial Activity

Paperwork Reduction Act Notice

Public reporting burden for this application is estimated to average 28.6 hours per application, including time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding the burden estimate, any other aspect of this collection of information, or suggestions for improving this form, including suggestions which may increase or reduce this burden to: Chief, Information Policy Branch, PM-223, U.S. Environmental Protection Agency, 1200 Pennsylvania Avenue, NW, Washington, DC 20460, or Director, Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC 20503.

	lancae and	iongitude of its		the hearest	10 3000103 2		of the receiving water.
A. Outfall Number (<i>list</i>)	B. Latitude			1	C. Longitude		D. Receiving Water (name)
009	39	03	14	89	23	57	Coffeen Lake
010	39	03	12	89	23	57	Coffeen Lake
011	39	03	01	89	24	01	Coffeen Lake
012	39	02	57	89	23	54	Coffeen Lake
013	39	02	39	89	23	41	Coffeen Lake
014	39	02	36	89	02	38	Coffeen Lake
015	39	03	19	89	24	02	Coffeen Lake
016	39	03	39	89	24	18	Coffeen Lake
018	39	03	55	89	24	12	Coffeen Lake

II. Improvements

A. Are you now required by any Federal, State, or local authority to meet any implementation schedule for the construction, upgrading or operation of wastewater treatment equipment or practices or any other environmental programs which may affect the discharges described in this application? This includes, but is not limited to, permit conditions, administrative or enforcement orders, enforcement compliance schedule letters, stipulations, court orders, and grant or loan conditions.

1. Identification of Conditions,		2. Affected Outfalls	· · · · ·	4. Final Compliance Date		
Agreements, Etc.	number	source of discharge	3. Brief Description of Project	a. req.	b. proj.	
None.				•		
			environmental projects which may affect your discharges d, and indicate your actual or planned schedules for cons		ve under	

III. Site Drainage Map

Attach a site map showing topography (or indicating the outline of drainage areas served by the outfalls(s) covered in the application if a topographic map is unavailable) depicting the facility including: each of its intake and discharge structures; the drainage area of each storm water outfall; paved areas and buildings within the drainage area of each storm water outfall, each known past or present areas used for outdoor storage of disposal of significant materials, each existing structural control measure to reduce pollutants in storm water runoff, materials loading and access areas, areas where pesticides, herbicides, soil conditioners and fertilizers are applied; each of its hazardous waste treatment, storage or disposal units (including each area not required to have a RCRA permit which is used for accumulating hazardous waste under 40 CFR 262.34); each well where fluids from the facility are injected underground; springs, and other surface water bodies which received storm water discharges from the facility.

EPA Form 3510-2F (1-92) .

Continue on Page 2b

Continued from					
IV. Narrativ	ve Description of Pollutant S	ources			
A. For each o drained by	putfall, provide an estimate of the area (includ y the outfall.	de units) of imperious surface	es (including p	aved areas and building roofs) drained to the outfall, and	an estimate of the total surface area
Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)	Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)
001 020 021 022 C01	5.3 acres 5.3 acres 84 acres 5.3 acres 1.1 acres	15.8 acres 15.8 acres 95 acres 15.8 acres 1.1 acres	E01 H01 I01 002 008	1.1 acres 0.0 acres 0.0 acres 13.0 acres 0.0 acres	<pre>1.1 acres 28.5 acres (approx) 28.5 acres (approx) 18.0 acres 14.1 acres</pre>
B. Provide a to storm	narrative description of significant mat water; method of treatment, storage, c	erials that are currently o or disposal; past and pre	I or in the past esent materia	three years have been treated, stored or dispose als management practices employed to minimize nd frequency in which pesticides, herbicides, so	ed in a manner to allow exposure e contact by these materials with
components wastes are contribut preventive C. For eac	s (switchyard/transformers) h e stored in sheltered areas o ory to the Coal Yard Settling e maintenance are used to min h outfall, provide the location and a d	ave additional exp r in sealed contain Pond (Outfall 002 imize contact with	osure to 1 ners. Co). SPCC 1 raw mate	coal combustion byproducts. Rail sp nerbicides that are applied for vega al storage and handling areas have d plans are in place. Periodic docume rials, byproducts, or chemicals with	tative control. Hazardous iversion dikes that are nted inspections and storm water.
	olid or fluid wastes other than by disch		nedule and t	ype of maintenance for control and treatment me	asures and the ultimate disposal
Outfall Number		-	Treatment		List Codes from Table 2F-1
001,020 021,022 C01,E01 H01,I01 002,008	All outfalls except as note Outfalls CO1 & EO1: SPCC & OO2: SPCC & SWPPP, preventi	SWPPP, preventativ	ve mainten		1-U
A. I certify				en tested or evaluated for the presence of nonst nying Form 2C or From 2E application for the out	
Name and O	fficial Title (type or print) Sig	gnature	~	2	Date Signed
Michael L.	Menne,	Mn.	PU	21	07-25-12
	lent - Environmental Services	I ficker of		feme	
Topograph				ainage points that were directly observed during , and visual observations were utili	
VI. Signifi	cant Leaks or Spills				
	xisting information regarding the histo ate date and location of the spill or leak			oxic or hazardous pollutants at the facility in the lacility in the lacility in the lacility in the lacility in	he last three years, including the
None.					

.

Continued from		d a still still			
	ve Description of Pollutant Sou				
drained by	y the outfall.			aved areas and building roofs) drained to the outfall, and ar	
Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)	Outfall Number	Area of Impervious Surface (provide units)	Total Area Drained (provide units)
	0 acres	s 0.2 acres 014 0 acres		2.4 acres	
	0 acres 0 acres				1.6 acres 3.7 acres
	0 acres 0 acres	0.3 acres 2.0 acres	018	0-91 acres (dependent on extent of landfill cell development	91 acres
to storm storm wa applied.	water; method of treatment, storage, or tter runoff; materials loading and access	disposal; past and pre areas, and the locatior	esent materia n, manner, a	three years have been treated, stored or disposed als management practices employed to minimize co and frequency in which pesticides, herbicides, soil c	in a manner to allow exposure ontact by these materials with onditioners, and fertilizers are
components wastes are contributo preventivo	s (switchyard/transformers) have e stored in sheltered areas or ory to the Coal Yard Settling H e maintenance are used to minin choutfall, provide the location and a des	ve additional exp in sealed contain ond (Outfall 002 mize contact with scription of existing stru	osure to ners. Co). SPCC raw mate uctural and	coal combustion byproducts. Rail spur herbicides that are applied for vegeta: al storage and handling areas have div plans are in place. Periodic document rials, byproducts, or chemicals with s	tive control. Hazardous ersion dikes that are ed inspections and torm water.
of any s	tion of the treatment the storm water rece olid or fluid wastes other than by discharg		nedule and t	ype of maintenance for control and treatment meas	·
Outfall Number		1	Treatment		List Codes from Table 2F-1
009,010 011,012 013,014 015,016 018	All outfalls except as noted Outfall 018: same as above p	1-0			
V. Nonsto	rmwater Discharges				
				en tested or evaluated for the presence of nonstorr nying Form 2C or From 2E application for the outfall	
Name and O	fficial Title (type or print) Sign	ature		Ľ	Date Signed
See Page	2a of 3.				
B. Provide	a description of the method used, the da	ate of any testing, and t	the onsite dr	ainage points that were directly observed during a t	est.
See Page		<u></u>			
VI Signifi	cant Leaks or Spills				
Provide e			•	oxic or hazardous pollutants at the facility in the al released.	last three years, including the
None.					

Continued from Page 2	EPA ID Number (copy from Item 1 IL0000108	of Form 1)								
Continued from Page 2 VII. Discharge Information										
A, B, C, & D: See instructions before proceeding. Complete one set of tables for each outfall. Annotate the outfall number in the space provided. Table VII-A, VII-B, VII-C are included on separate sheets numbers VII-1 and VII-2.										
E. Potential discharges not covered by an currently use or manufacture as an interr	alysis – is any toxic pollutant listed in table 2F-2, 2 mediate or final product or byproduct?	PF-3, or 2F-4, a substance or a co	mponent of a substance which you							
Yes (list all such pollutants be		\checkmark No (go to Section IX)								
VIII. Biological Toxicity Testing D	ata									
Do you have any knowledge or reason to b relation to your discharge within the last 3 y	elieve that any biological test for acute or chronic tox ears?	icity has been made on any of your	discharges or on a receiving water in							
Yes (list all such pollutants be		\checkmark No (go to Section IX)								
IX. Contract Analysis Information										
	VII performed by a contract laboratory or consulting fi									
Yes (list the name, address, a analyzed by, each such l	and telephone number of, and pollutants laboratory or firm below)	No (go to Section X)	••••••••••••••••••••••••••••••••••••••							
A. Name	B. Address	C. Area Code & Phone No.	D. Pollutants Analyzed							
PDC Laboratories, Inc.	2231 West Altorfer Road Peoria IL 61615	309-692-9688	All except pH, flow, and temperature.							
X. Certification										
that qualified personnel properly gather ar directly responsible for gathering the info	sument and all attachments were prepared under my nd evaluate the information submitted. Based on my i rmation, the information submitted is, to the best of ng false information, including the possibility of fine ar	nquiry of the person or persons wh my knowledge and belief, true, ac	o manage the system or those persons curate, and complete. I am aware that							
A. Name & Official Title (<i>Type Or Print</i>) Michael L. Menne,		B. Area Code and Phone No. 314-554-2816								
Vice President - Environmental Service C. Signature	vices	D. Date Signed								
M. M.	appen	07-25	-12							
EPA Form 3510-2F (1-92)	Page 3 of 3	·	······							

.

R 071

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

SEE INSTRUCTIONS.			nued from page	a 2 of Form 2 Cl					1			OUTFALL NO).
	· · · · · · · · · · · · · · · · · · ·								and an and a second second Second second second Second second			001	
PART A –You must pro	vide the result	ts of at least one and	alysis for every	pollutant in this tab	le. Complete o	ne table for eac	h outfall. See ins	structions for add		TO	1		
	2. EFFLUENT							· · · · · · · · · · · · · · · · · · ·	3. UNITS (specify if blank)		4. INTAKE (optional)		-,
	a. MAXIMUM DAILY VALUE		b. MAXIMUM 30 DAY VALUE (<i>if available</i>)		c. LOI	c. LONG TERM AVRG. VALUE (<i>if available</i>)		d. NO. OF	a. CONCEN-		a. LONG TERM AVERAGE VALUE		b. NO. OF
1. POLLUTANT	(1) CONCENTRA	ATION (2) MASS	(1) CONCENTRA	TION (2) MASS	(1) CONCI	ENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYS
a. Biochemical Oxygen Demand (BOD)	<1	<1						1	mg/L	lb/dy	4.4	4	1
b. Chemical Oxygen Demand (<i>COD</i>)	16	16						1	mg/L	lb/dy	14	14	1
c. Total Organic Carbon (<i>TOC</i>)	6.	0 6						1	mg/L	lb/dy	6.2	6	1
d. Total Suspended Solids (<i>TSS</i>)	6.	8 7						1	mg/L	lb/dy	12	12	1
e. Ammonia (<i>as N</i>)	<0.	10 <0.1						1	mg/L	lb/dy	<0.10	<0.1	1
f. Flow	VALUE	0.12	VALUE	0.20	VALUE	013	<u></u>	1,31,366	MGD		VALUE		
g. Temperature (winter)			VALUE	31.0	VALUE	23.6		cont	°C		VALUE		
h. Temperature (summer)			VALUE 40.3 VALUE		33.8		cont		VALUE				
і. pH	MINIMUM 7.45	MAXIMUM 8.23	MINIMUM 6.9	MAXIMUM 7.6				1,24	STANDARD	UNITS			
directly, or i	ndirectly but e	each pollutant you expressly, in an effli	uent limitations	; guideline, you mu	st provide the	results of at lea	ast one analysis	for that polluta	nt. For other pol	lutants for v	umn 2a for any pollu which you mark colu	itant which is imn 2a, you	limited eithe must provide
	MARK "X"		ation of their presence in your discharge. Complete 3			EFFLUENT			4. UNITS		5. INTAKE (optional)		<i>al</i>)
. POLLUTANT AND a.	b.	a. MAXIMUM DA	AILY VALUE	b. MAXIMUM 30 (if availe		le) (if available)					a. LONG TERM VALU		
CAS NO. BELIEVI (if available) PRESEI	ED BELIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATI	ON (2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSE
. Bromide 24959-67-9)	\mathbf{X}	<1.0	<1.0					1	mg/L	lb/dy	<1.0	<1.0	1
. Chlorine, Total Kesidual		0.14	0.1	0.20	0.3	0.10	0.1	1,24	mg/L	lb/dy	<0.05	<0.1	1
. Color	X							0					0
. Fecal Coliform								0	CFU/0.1L	,	3		1
. Fluoride 16984-48-8)		0.33	0.3					1	mg/L	lb/dy	0.31	0.3	1
Nitrate-Nitrite X		0.73	0.7					1	mg/L	lb/dy	0.81	0.8	1
PA Form 3510-2C (8-90)					PAGE V-1					(CONTINUE C	N REVERS
otes: Temperature				g zone. Idenser chlorina									

Total Residual Chlorine obtained during regulated condenser chlorination period at a point representative of the cooling water discharge flume.

ITEM V-B CONT	TINUED FR	OM FRONT											Ou	tfall 001
	2. MA	RK "X"				EFFLUENT				4. UNI	TS	5. INT	FAKE (option	al)
1. POLLUTANT AND CAS NO.	a.	b.	a. MAXIMUM D	AILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A (if availa		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \	ALUE	
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) · CONCENTRATION	(2) MASS	, (1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		<1.1	<1.1					1	mg/L	lb/dy	1.1	1.1	1
h. Oil and Grease		\times	<5	<5.0			·		1	mg/L	lb/dy	<5	<5.0	1
i. Phosphorus (as P), Total (7723-14-0)	\times		<0.10	<0.1					1	mg/L	lb/dy	<0.10	<0.1	1
j. Radioactivity	,	,										· · ·		
(1) Alpha, Total									0			·		0
(2) Beta, Total									0					`
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (<i>as SO</i> ₄) (14808-79-8)	\times		62	62					1	mg/L	lb/dy	55	55	1
1. Sulfide (as S)		\times	<2.0	<2.0					1	mg/L	lb/dy	<2.0	<2.0	1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0	<2.0					1	mg/L	lb/dy	<2.0	<2.0	1
n. Surfactants		\times	<0.10	<0.1		-			1	mg/L	lb/dy	0.19	0.2	1
o. Aluminum, Total (7429-90-5)	\times		0.096	<0.1					1	mg/L	lb/dy	<0.050	<0.1	1
p. Barium, Total (7440-39-3)	\times		0.07	<0.1					1	mg/L	lb/dy	0.06	<0.1	1
q. Boron, Total (7440-42-8)	\times		0.26	0.3					1	mg/L	lb/dy	0.35	0.3	1
г. Cobalt, Total (7440-48-4)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1
s. Iron, Total (7439-89-6)	\times		0.28	0.3					1	mg/L	lb/dy	0.08	<0.1	1
t. Magnesium, Total (7439-95-4)	\times		15	15					1	mg/L	lb/dy	14	14	1
u. Molybdenum, Total (7439-98-7)		\times	<0.010	<0.1					1	mg/L	lb/dy	<0.010	<0.1	1
v. Manganese, Total (7439-96-5)	\times		0.035	<0.1					1	mg/L	lb/dy	0.024	<0.1	1
w. Tin, Total (7440-31-5)	\times		<0.060	<0.1					1	mg/L	lb/dy	<0.060	<0.1	1
x. Titanium, Total (7440-32-6)	\times		<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1

				E	PA I.D. NUM	MBER (copy from Ite	m 1 of Form 1) OUTFALL NUM	IBER						
CONTINUED FRO	M PAGE 3 (OF FORM 2	-C			IL0000108		001	-						
PART C - If you a fraction fraction provide dischar pollutar briefly	are a primar ns that apply ns), mark "X the results ged in conc nts which vo	y industry a v to your ind " in column of at least o entrations o u know or l e reasons th	nd this out dustry and 2-b for eac one analysis of 10 ppb or nave reason ne pollutant	for ALL toxic meta ch pollutant you kn s for that pollutant. greater, lf you ma n to believe that yo	ls, cyanides, ow or have If you mark rk column 2l u discharge	er, refer to Table 2c and total phenols, reason to believe is column 2b for any o for acrolein, acryle in concentrations c . Note that there a	If you are n s present. Ma pollutant, you onitrile, 2,4 d of 100 ppb or	ot required to mark ark "X" in column 2 a must provide the initrophenol, or 2-m greater. Otherwise	k column 2 -c for each results of a nethyl-4, 6 e. for pollut	-a (secondary pollutant you t least one ar linitrophenol, ants for which	industries, nor believe is abs alysis for that p you must provid you mark colu	<i>process wa</i> ent. If you m collutant if yo de the result mn 2b, you	stewater outfalls, a nark column 2a for ou know or have re- s of at least one ar must either submit	and nonrequ any pollutar ason to beli- nalysis for e at least one	<i>uired GC/MS</i> nt, you must eve it will be ach of these analysis or
		2. MARK "X	n				FFLUENT				4. UN	ITS	5. INT/	AKE (optiond	<i>ıl</i>)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (if ava					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANID	E, AND TOT	TAL PHENC	DLS								······				4
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<0.02					1	ug/L	lb/dy	<20	<0.02	1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20	<0.02					1	ug/L	lb/dy	<20	<0.02	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
4M. Cadmium, Total (7440-43-9)	\times		X	<2	<0.01					1	ug/L	lb/dy	<2	<0.01	1
5M. Chromium, Total (7440-47-3)	X		\times	<4	<0.01					1	ug/L	lb/dy	<4	<0.01	1
6M. Copper, Total (7440-50-8)	\times		\times	16	0.02					1	ug/L	lb/dy	13	0.01	1
7M. Lead, Total (7439-92-1)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
8M. Mercury, Total (7439-97-6)	\times		\times	<1	<0.01					1	ng/L	lb/dy	<1	<0.01	1
9M. Nickel, Total (7440-02-0)	X		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
10M. Selenium, Total (7782-49-2)	\times		\times	<10	<0.01					1	ug/L	lb/dy	12	0.01	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
12M. Thallium, Total (7440-28-0)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<1.0	<0.01	1
13M. Zinc, Total (7440-66-6)	\times		X	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
14M. Cyanide, Total (57-12-5)	\times		X	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
15M. Phenols, Total	\times		\times	<10	<0.01					1	ug/L	lb/dy	<5	<0.01	1
DIOXIN								•						<u>/</u>	
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU							····				
EPA Form 3510-2C	(8-90)				ş		PAGE	V-3					CON	TINUE ON	REVERSE

CONTINUE ON REVERSE

	2	2. MARK "X	, n			3, E	FFLUENT				4. UN	ITS	5. INT/	AKE (optiona	rl)
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (<i>if ave</i>					a. LONG T AVERAGE \		ĺ
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS											1 	
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5						1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V, Bromoform (75-25-2)	$ \times $		$ \times$	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1'
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	< 5						1	ug/L		< 5		1
11V. Chloroform (67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- bromomethane (75-27-4)	\times		\times	< 5						1	ug/L		<5		1
13V. Dichloro- difluoromethane (75-71-8)				Note 1									Note 1		
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
15V. 1,2-Dichloro- ethane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
I6V. 1,1-Dichloro- ethylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- propane (78-87-5)	X		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- propylene * * 542-75-6)	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	X		\times	<5						1	ug/L		<5		1
OV. Methyl Bromide (74-83-9)	X		\times	<5						1	ug/L		<5		1
1V. Methyl Chloride (74-87-3)	X		X	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO										•				Outf	all 001
	2	2. MARK "X	"				FFLUENT	I		T	4. UN	IITS		KE (optiond	<i>1l</i> }
1. POLLUTANT AND CAS NUMBER	a.	b.	C.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 (if availat		c. LONG TERM VALUE (if and	ailable)				a. LONG T AVERAGE V		
(if available)	REQUIRED		ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	- VOLATIL	E COMPOU	UNDS (con	tinued)											
22V. Methylene Chloride (75-09-2)	\times		\times	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5						1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		\times	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	X		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	X		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	- ACID CO	MPOUNDS								-					
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- phenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A. 2,4-Dimethyl- phenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	$\times \mid$		\times	<50						1	ug/L		<50		1
5A. 2,4-Dinitro- ohenol (51-28-5)	\times		\times	<50						1	ug/L		<50		1
5A, 2-Nitrophenol 88-75-5)	X		\times	<10						1	ug/L		<10		1
7A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
3A, P-Chloro-M- Cresol (59-50-7)	X		\times	<10						1	ug/L		<10		1
A. Pentachloro- bhenol (87-86-5)	X		X	<50						1	ug/L		<50		1
0A. Phenol 108-95-2)	\times		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		\times	<50						1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

	2	2. MARK "X		[3. E	FFLUENT				4. UN	ITS	5. INTA	AKE (optiond	ıl)
1. POLLUTANT AND CAS NUMBER	a,	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (<i>if ave</i>		-1 110 05			a. LONG T AVERAGE V	ERM	
(if available)	TESTING REQUIRED	PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	– BASE/NE	EUTRAL CO	OMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	\times		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	Х		X	<80						1	ug/L		<80		1
5B. Benzo (<i>a</i>) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (<i>a</i>) Pyrene (50-32-8)	X		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
8B. Benzo (ghi) Perylene (191-24-2)	X		X	<10						1	ug/L		<10		1
9B, Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		<10		1
10B. Bis (<i>2-Chloro- ethoxy</i>) Methane (111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- ethyl) Ether 111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
13B. Bis (<i>2-Ethyl-</i> hexyl) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
4B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl Phthalate (85-68-7)	$\times \mid$		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- aphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	\times		$\times \mid$	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) Inthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	X		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		X	<10						1	ug/L		<10		1

CONTINUED FRO		2. MARK "X	<i>n</i>	<u> </u>		3. E	FFLUENT	·····			4. UN	IITS	5. INT/	AKE (optiona	<i>ıl</i>)
1. POLLUTANT AND	a,	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 I (if availat		c. LONG TERM VALUE (if ave					a. LONG T AVERAGE \	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	N – BASE/N	EUTRAL CO	OMPOUNE					· · · · · · · · · · · · · · · · · · ·	L		I		,	1 (1) 10 (2)	
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		\times	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L	•	<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		\times	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		\times	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\sim		\times	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		\times	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B, Hexachioro- benzene (118-74-1)	\times		\times	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		\times	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	< 50						1	ug/L		< 50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone (78-59-1)	X		X	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	\times		\times	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	\times		X	<10						1	ug/L		<10		1
41B, N-Nitro- sodimethylamine 62-75-9)	\times		\times	<10						1	ug/L		<10		1
12B. N-Nitrosodi- N-Propylamine 621-64-7)	X		X	<10						1	ug/L		<10		1

CONTINUED FRO		2. MARK "X	"	T	3. F	FFLUENT		 	4. UN	IITS	5 INT	AKE (option	fall 001
1. POLLUTANT AND	a.			a. MAXIMUM DA	 b. MAXIMUM 30 ((if availal	DAY VALUE	c. LONG TERM VALUE (if av		4.01		a. LONG T AVERAGE	ERM	
CAS NUMBER (if available)	TESTING	b. BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	1	b. NO. OI ANALYSE
GC/MS FRACTION	I – BASE/NE	EUTRAL CO	OMPOUND		 			 				1	
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10				1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	X		X	<10				1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10				1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		Х	<10				1	ug/L		<10		1
GC/MS FRACTION	I – PESTICI	DES											
1P. Aldrin (309-00-2)			\times										
2P. α-BHC (319-84-6)			\times										
3Ρ. β-BHC (319-85-7)			\times										
4P. γ-BHC (58-89-9)			\times		 								
5P. δ-BHC (319-86-8)			\times										
6P. Chlordane (57-74-9)			\times		 								
7P. 4,4'-DDT (50-29-3)			\times										
8P. 4,4'-DDE (72-55-9)			\times										
9P. 4,4'-DDD (72-54-8)			\times					 					
10P. Dieldrin (60-57-1)			\times		 			 					
11P. α-Enosulfan (115-29-7)			\times		 			 					
12P. β-Endosulfan (115-29-7)			\times		 			 					
13P. Endosulfan Sulfate (1031-07-8)			\times										
14P. Endrin (72-20-8)			\times		 								
I5P. Endrin Aldehyde 7421-93-4)			$\times $										
I6P. Heptachlor 76-44-8)			\times										

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
CONTINUED FRO	M PAGE V-8	3			I	L0000108		00)1						
		2. MARK "X	n	L		3. E	FFLUENT	L			4. UN	ITS	5. INT/	AKE (optiond	<i>ıl</i>)
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE			c. LONG TERM VALUE (<i>if ave</i>					a. LONG T AVERAGE \	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	- b. NO. OF ANALYSES
GC/MS FRACTION	– PESTICII	DES (contin	ued)											·	
17P. Heptachlor Epoxide (1024-57-3)			\times	·····											
18P. PCB-1242 (53469-21-9)			\times	<0.5						1	ug/L		• <0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			X	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

SEE INSTRUC	TIONS.		,,	5				17000	0108					
V. INTAKE AN	ID EFFLUE	ENT CHARA	CTERISTICS (conti	nued from page	a 3 of Form 2-C)								OUTFALL NC	1.
PART A -You	must prov	ide the resulf	ts of at least one an	alysis for every	pollutant in this tab	le. Complete o	ne table for each o	utfall. See instr	ructions for add	litional details.				
					2. EFFLU	JENT				3. UNIT (specify if b			4. INTAKE (optional)	
		a. MAXIMI	UM DAILY VALUE		M 30 DAY VALUE available)	c. LO	NG TERM AVRG. \ (if available)	VALUE				a. LONG 1 AVERAGE 1	ERM	1
1. POLLUT	TANT	(1) CONCENTRA	ATION (2) MASS	(1) CONCENTRAT	TION (2) MASS	(1) CONC	ENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSE
a. Biochemical Demand (BOD)		<1	<3,000						1	mg/L	lb/dy	4.4	15,000	1
b. Chemical Ox Demand (COD)		16	54,000						1	mg/L	lb/dy	14	47,000	1
c. Total Organi (TOC)	c Carbon	6.	0 20,000						1	mg/L	lb/dy	6.2	21,000	1
d. Total Susper Solids (<i>TSS</i>)) ⁻ 6.8 23,000								1	mg/L	lb/dy	12	40,000	1
e. Ammonia (<i>as</i>	5 N)	<0.	10 <300						l	mg/L	lb/dy	<0.10	<300	1
f. Flow		VALUE	402.5	VALUE 6	59.0	VALUE	359.8		cont	MGD		VALUE		
g. Temperature (winter)	erature VALUE VALUE 31.0				VALUE	23.6		cont	°C		VALUE			
h. Temperature (summer)	;	VALUE		VALUE 4	10.3	VALUE	33.8		cont	°C		VALUE		
i. pH		MINIMUM 7.45	MAXIMUM 8.23	MINIMUM 6.9	MAXIMUM 7.6				1,24	STANDARD L	INITS			
dire	ectly, or inc	directly but e	each pollutant you expressly, in an efflu	uent limitations	guideline, you mu	st provide the	results of at least	one analysis f	or that polluta	nt. For other polli	utants for w			
	2. M/	ARK "X"		,	3	. EFFLUENT			_	4. UN		5. IN	TAKE (optiona	<i>l</i>)
I. POLLUTANT AND CAS NO.	a.	b.	a. MAXIMUM DA	AILY VALUE	b. MAXIMUM 30 (if availe		c. LONG TERM / (if avail	lable)	d. NO. OF	a. CONCEN-		a. LONG TERM VALU	E	b. NO. OF
(if available)	BELIEVED		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Bromide 24959-67-9)		$ \times$	<1.0	<300					1	mg/L	lb/dy	<1.0	<300	1
o. Chlorine, Total Residual	\times		0.14	470	0.20	1,100	0.10	310	1,24	mg/L	lb/dy	<0.05	<170	1
. Color		$ \times$							0	·				0
I. Fecal Coliform	\times								0	CFU/0.1L		3		1
e. Fluoride 16984-48-8)	$ \times$		0.33	1,100					1	mg/L	lb/dy	0.31	1,000	1
. Nitrate-Nitrite as N)	\times		0.73	2,400					1	mg/L	lb/dy	0.81	2,700	1
PA Form 3510-	2C (8-90)						PAGE V-1					(CONTINUE O	N REVERSE
			adding a Edding second	1			1							

Notes: Temperature obtained at edge of the regulatory mixing zone.

Total Residual Chlorine obtained during regulated condenser chlorination period at a point representative of the cooling water discharge flume.

ITEM V-B CONT										<u> </u>				tfall 020
1. POLLUTANT	2. MA	RK "X"				EFFLUENT			Т	4. UNI	TS		AKE (option	al)
AND CAS NO.	a.	b.	a. MAXIMUM D	AILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A (<i>if availa</i>		d, NO, OF			a. LONG T AVERAGE	VALUE	
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		<1.1	<3,700					1	mg/L	lb/dy	1.1	3700	1
h. Oil and Grease		\times	<5	<17,000					1	mg/L	lb/dy	<5		1
i. Phosphorus (as P), Total (7723-14-0)	\times		<0.10	<300					1	mg/L	lb/dy	<0.10	<300	1
j. Radioactivity														
(1) Alpha, Total									0					0
(2) Beta, Total									0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (as SO4) (14808-79-8)	\times		62	21,000					1	mg/L	lb/dy	55	18000	1
I. Sulfide (as δ)		\times	<2.0	<6,000					1	mg/L	lb/dy	<2.0	<6000	1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0	<6,000					1	mg/L	lb/dy	<2.0	<6000	1
n. Surfactants		$\times \mid$	<0.10	<300					1	mg/L	lb/dy	0.19	640	1
o. Aluminum, Total (7429-90-5)	\times		0.096	320					1	mg/L	lb/dy	<0.050	<200	1
p. Barium, Total (7440-39-3)	\times		0.07	200					1	mg/L	lb/dy	0.06	200	1
q. Boron, Total (7440-42-8)	\times		0.26	870					1	mg/L	lb/dy	0.35	1200	1
r. Cobalt, Total (7440-48-4)		\times	<0.005	<20					1	mg/L	lb/dy	<0.005	<20	1
s. Iron, Total (7439-89-6)	\times		0.28	940					1	mg/L	lb/dy	0.08	300	1
t. Magnesium, Total (7439-95-4)	\times		15	50,000					1	mg/L	lb/dy	14	50000	1
u. Molybdenum, Total (7439-98-7)		\times	<0.010	<30					1	mg/L	lb/dy	<0.010	<30	1
v, Manganese, Total (7439-96-5)	\times		0.035	120					1	mg/L	lb/dy	0.024	81	1
w. Tin, Total (7440-31-5)	\times		<0.060	<200					1	mg/L	lb/dy	<0.060	<200	1
k. Titanium, Total (7440-32-6)	\times		<0.005	<20					1	mg/L	lb/dy	<0.005	<20	1.

fractions) provide ti discharge pollutants briefly de additiona	e a primary that apply), mark "X" he results o ed in conce s which you escribe the I details an	r industry and to your ind in column of at least o entrations o a know or h reasons th	nd this out lustry and 2-b for eac one analysi f 10 ppb or nave reaso	for ALL toxic meta ch pollutant you kn s for that pollutant. greater, if you ma	ls, cyanides, ow or have i	IL0000108 er, refer to Table 2c	-2 in the inst	020	•						
PART C - If you are fractions fractions provide ti discharge pollutants briefly de additiona	e a primary that apply), mark "X" he results o ed in conce s which you escribe the I details an	r industry and to your ind in column of at least o entrations o a know or h reasons th	nd this out lustry and 2-b for eac one analysi f 10 ppb or nave reaso	for ALL toxic meta ch pollutant you kn s for that pollutant. greater, if you ma	ls, cyanides, ow or have i	er, refer to Table 2c	-2 in the inst								
	2	arequirem			rk column 2t u discharge	reason to believe is column 2b for any o for acrolein, acrylo in concentrations o Note that there an	If you are n s present. Ma pollutant, you politrile, 2,4 di of 100 ppb or	ot required to mark ark "X" in column 2- I must provide the I nitrophenol, or 2-m greater. Otherwise	c column 2- -c for each results of at ethyl-4, 6 c , for polluta	a (secondary pollutant you least one an linitrophenol, j ints for which	industries, nor believe is abse alysis for that p you must provid you mark colu	nprocess wa ent. If you m collutant if yo de the result mn 2b, you i	stewater outfalls, a ark column 2a for u know or have rea s of at least one an must either submit	and nonrequ any pollutat ason to beli alysis for e at least one	ired GC/MS nt, you must eve it will be ach of these analysis or
		. MARK "X	n 1				FFLUENT			·	4. UN	ITS		AKE (optiona	ıl)
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availai		c. LONG TERM VALUE (if ave					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANIDE,	AND TOT	AL PHENO	LS												•
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<70					1	ug/L	lb/dy	<20	<70	1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20	<70					1	ug/L	lb/dy	<20	<70	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<20					1.	ug/L	lb/dy	<5	<20	1
4M. Cadmium, Total (7440-43-9)	\times		\times	<2	<7					1	ug/L	lb/dy	<2	<7	1
5M. Chromium, Total (7440-47-3)	\times		\times	<4	<10					1	ug/L	lb/dy	<4	<10	1
6M. Copper, Total (7440-50-8)	\times		\times	16	54					1	ug/L	lb/dy	13	44	1
7M. Lead, Total (7439-92-1)	\times		\times	<10	<30				:	1	ug/L	lb/dy	<10	<30	1
8M. Mercury, Total (7439-97-6)	\times		\times	<1	<0.1					1	ng/L	lb/dy	<1	<0.1	1
9M. Nickel, Total (7440-02-0)	\times		\times	<10	<30					1	ug/L	lb/dy	<10	<30	1
10M. Selenium, Total (7782-49-2)	\times		\times	<10	<30					1	ug/L	lb/dy	12	40	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<30					1	ug/L	lb/dy	<10	<30	1
12M. Thallium, Total (7440-28-0)	\times		\times	<10	<30					1	ug/L	lb/dy	<10	<30	1
13M. Zinc, Total (7440-66-6)	\times		\times	<10	<30					1	ug/L	lb/dy	<10	<30	1
14M. Cyanide, Total (57-12-5)	\times		\times	<5	<20					1	ug/L	lb/dy	<5	<20	1
15M. Phenols, Total	$\times \mid$		\times	<10	<30					1	ug/L	lb/dy	<5	<30	1
DIOXIN 2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	_TS		PAGE						CON		

CONTINUE ON REVERSE

	2	2. MARK "X				3. E	FFLUENT				4. UN	ITS	5. INT,	AKE (optiond	ıl)
1. POLLUTANT AND	a.	b,	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERN VALUE (if ava	uilable)		0.011051		a. LONG T AVERAGE		Í
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS												
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		X	<5						1	ug/L		<5		1
4V. Bis (<i>Chloro-</i> <i>methyl</i>) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V, Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	X		X	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1
10V, 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	< 5						1	ug/L		<5		1
11V. Chloroform (67-66-3)	X		\times	Note 2									Note 2		
12V. Dichloro- promomethane (75-27-4)	\times		\times	<5						1	ug/L		<5		1
13V. Dichloro- difluoromethane 75-71-8)				Note 1									Note 1		
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
15V. 1,2-Dichloro- ethane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- hylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- propane (78-87-5)	X		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- propylene * * 542-75-6)	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	X		X	<5						1	ug/L		<5		1
OV. Methyl Bromide (74-83-9)	X		\times	<5						1	ug/L		<5		1
1V. Methyl Chloride (74-87-3)	X		X	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO	· · · · · · · · · · · · · · · · · · ·			F		~ -	COLUCIE					1 har da			all 020
1. POLLUTANT		2. MARK "X	,, T			3. E b. MAXIMUM 30	FFLUENT	c. LONG TERM		T	4. UN	ITS		AKE (optiond	<i>al</i>)
AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	(if availat		VALUE (if ave					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)											
22V. Methylene Chloride (75-09-2)	\times		\times	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5						1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		$ \times$	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5					•	1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	\times		\times	<5						1	ug/L		<5	J.J	1
GC/MS FRACTION	– ACID CO	MPOUNDS													
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- phenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A. 2,4-Dimethyl- ohenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
5A. 2,4-Dinitro- ohenol (51-28-5)	\times		\times	<50						1	ug/L		<50		1
SA. 2-Nitrophenol 88-75-5)	\times		\times	<10						1	ug/L		<10		1
7A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
BA. P-Chloro-M- Cresol (59-50-7)	\times		\times	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	\times		\times	<50						1	ug/L		< 50		1
0A. Phenol 108-95-2)	\times		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		X	<50					T	1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

	2	2. MARK "X	и			3. E	FFLUENT				4. UN	ITS	5. INT/	AKE (option	ı/)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (if ava					a. LONG T AVERAGE V	ERM	1
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT	BELIEVED ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	- b. NO. OF ANALYSE
GC/MS FRACTION	– BASE/NE	UTRAL CO	DMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	\times		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	\times		\times	<80						1	ug/L		<80		1
5B. Benzo (a) Anthracene (56-55-3)	\times		X	<10						1	ug/L		<10		1
6B. Benzo (<i>a</i>) Pyrene (50-32-8)	X		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
8B. Benzo (ghi) Perylene (191-24-2)	\times		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		<10		1
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- ethyl) Ether 111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
I3B. Bis (<i>2-Ethyl-</i> <i>iexyl</i>) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
4B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl Phthalate (85-68-7)	X		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- aphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	X		\times	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) nthracene 53-70-3)	X		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	X		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		X	<10						1	ug/L		<10		1

CONTINUED FRO															all 020
		2. MARK "X	"				FFLUENT			T	4. UN	IITS		AKE (optiona	ıl)
1. POLLUTANT AND CAS NUMBER	a, TESTING	b. BELIEVED	c. BELIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availat		c. LONG TERM VALUE (if ava		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \	/ALUE	b. NO. OF
(if available)	REQUIRED		ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION	N - BASE/N	EUTRAL CO	OMPOUNE	S (continued)		······		· · · · · · · · · · · · · · · · · · ·	•						
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		\times	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		\times	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		X	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\times		\times	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		\times	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	\times		\times	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		X	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone (78-59-1)	X		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	\times		X	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	\times		\times	<10						1	ug/L		<10		1
41B. N-Nitro- sodimethylamine (62-75-9)	\times		\times	<10						i	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine 621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUED FROM		2. MARK "X	n	T		3 6	FFLUENT		 	4. UN	нте	E INT	AKE (option	fall 020
1. POLLUTANT AND	 a.			a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 (if availa	DAY VALUE	c. LONG TERM VALUE (if av			115	a. LONG T AVERAGE \	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	b. BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		(1) CONCENTRATION	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	Г	b. NO. OF
GC/MS FRACTION	- BASE/NE	EUTRAL CO	DMPOUND	S (continued)									·	
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10					1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	\times		X	<10					1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10					1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10					1	ug/L		<10		1
GC/MS FRACTION	- PESTICI	DES												
1P. Aldrin (309-00-2)			X											
2P. α-BHC (319-84-6)			\times											
3Ρ. β-ΒΗϹ (319-85-7)			\times											
4Ρ. γ-BHC (58-89-9)			\times											
5Ρ. δ-BHC (319-86-8)			\times											
3P. Chlordane (57-74-9)			\times											
7P. 4,4'-DDT (50-29-3)			\times											
3P. 4,4'-DDE 72-55-9)			\times											
9P. 4,4'-DDD 72-54-8)			\times						 					
0P. Dieldrin 60-57-1)			X						 					
1P. α-Enosulfan 115-29-7)			X						 					
2P. β-Endosulfan 115-29-7) 3P. Endosulfan			\mathbf{X}						 					
Sulfate (1031-07-8)			\times					2						
4P. Endrin 72-20-8)			\times											
5P. Endrin Idehyde 7421-93-4)			\times											
6P. Heptachlor 76-44-8)			\times											

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
CONTINUED FROM	M PAGE V-8	3			I	L0000108		02	20						
		2. MARK "X'	,			3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	<i>1</i> /)
1. POLLUTANT AND	a,	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (if ave			0.01051		a. LONG T AVERAGE V	ERM	Ī
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	a. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	- PESTICI	DES (contin	ued)												
17P. Heptachlor Epoxide (1024-57-3)			Х												
18P. PCB-1242 (53469-21-9)			\times	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						- 1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

.

V. INTAKE AN	D EFFLU	ENT CHARA	CTERISTICS (conti	nued from page	e 3 of Form 2-C)							C	OUTFALL NO	Э.
PART A -You	must prov	ride the result	s of at least one an	alysis for every	pollutant in this tab	le. Complete o	ine table for each o	utfall. See inst	ructions for add	itional details.		a na		
					2. EFFLU	JENT				3. UNIT (specify if b			. INTAKE	
			JM DAILY VALUE		M 30 DAY VALUE available)	c. LO	NG TERM AVRG. \ (if available)	ALUE	d. NO, OF	a. CONCEN-		a. LONG T AVERAGE V	ERM	
1. POLLUT	ANT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRA	TION (2) MASS	(1) CONCI	ENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b, NO. OF ANALYSES
a. Biochemical Demand (BOD)		<1							1	mg/L	lb/dy	4.4		1
b. Chemical Ox Demand (<i>COD</i>)		16							1	mg/L	lb/dy	14		1
c. Total Organie (<i>TOC</i>)	c Carbon	6.	0						1	mg/L	lb/dy	6.2	_	1
d. Total Susper Solids (<i>TSS</i>)	nded	6.	В						1	mg/L	lb/dy	12		1
e. Ammonia (<i>as</i>	; N)	<0.2	10						1	mg/L .	lb/dy	<0.10		1
f. Flow		VALUE	0.0	VALUE 26	65.25	VALUE	68.85		cont	MGD		VALUE		
g. Temperature (winter)		VALUE	15.8	VALUE	31.0 .	VALUE	23.6		cont	°C		VALUE		
h. Temperature (<i>summer</i>)		VALUE		VALUE	10.3	VALUE	33.8		cont	°C		VALUE		
i. pH		MINIMUM 7.45	MAXIMUM 8.23	MINIMUM 7.1	MAXIMUM 8.9				1,12	STANDARD	JNITS			
dire	ctly, or in	directly but e		uent limitations	guideline, you mu	st provide the	results of at least	one analysis i	or that pollutar	nt. For other poll	utants for w	umn 2a for any pollu vhich you mark colu		
	2. N	ARK "X"	ļ		3	. EFFLUENT	····			4. UN			AKE (option	al)
1. POLLUTANT AND	a.	b.	a. MAXIMUM DA	AILY VALUE	b. MAXIMUM 30 (if availe		c. LONG TERM / (if avail		d. NO. OF	a, CONCEN-		a. LONG TERM VALUE		b. NO. OF
CAS NO. (if available)	BELIEVE PRESEN		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Bromide (24959-67-9)		$ \times$	<1.0						1	mg/L	lb/dy	<1.0		1
b. Chlorine, Total Residual	. X		0.14		0.20		0.10		1,24	mg/L	lb/dy	<0.05		1
c. Color		\times							0					0
d. Fecal Coliform	\times								0	CFU/0.1L		3		1
e. Fluoride (16984-48-8)	\times		0.33						1	mg/L	lb/dy	0.31		1
f. Nitrate-Nitrite (as N)	\times		0.73						1	mg/L	lb/dy	0.81		1
EPA Form 3510-	2C (8-90)						PAGE V-1					c	ONTINUE C	N REVERSE

Notes: Temperature obtained at edge of the regulatory mixing zone.

Total Residual Chlorine obtained during regulated condenser chlorination period at a point representative of the cooling water discharge flume.

ITEM V-B CONT			- 											tfall 021
1. POLLUTANT	2. MA	RK "X"				EFFLUENT		(DO) (1) 11-	1	4. UNI	TS		AKE (option	al)
AND CAS NO.	a.	b.	a. MAXIMUM DA	AILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A' (if availa		d, NO, OF	a. CONCEN-		a. LONG T AVERAGE V		
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		<1.1						1	mg/L	lb/dy	1.1		1
h. Oil and Grease		\times	<5						1	mg/L	lb/dy	<5		1
i. Phosphorus (as P), Total (7723-14-0)	\times		<0.10						1	mg/L	lb/dy	<0.10		1
j. Radioactivity														
(1) Alpha, Total									0					0
(2) Beta, Total									0					0
(3) Radium, Total				-					0					0
(4) Radium 226, Total									0					0
k. Sulfate (as SO ₄) (14808-79-8)	\times		62						1	mg/L	lb/dy	55		1
1. Sulfide (as S)		\times	<2.0					-	1	mg/L	lb/dy	<2.0		1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0						1	mg/L	lb/dy	<2.0		1
n. Surfactants		$\times \mid$	<0.10						1	mg/L	lb/dy	0.19		1
o. Aluminum, Total (7429-90-5)	\times		0.096						1	mg/L	lb/dy	<0.050		1
p. Barium, Total (7440-39-3)	\times		0.07						1	mg/L	lb/dy	0.06		1
q. Boron, Total (7440-42-8)	\times		0.26						1	mg/L	lb/dy	0.35		1
r. Cobalt, Total (7440-48-4)		\times	<0.005						1	mg/L	lb/dy	<0.005		1
s. Iron, Total (7439-89-6)	\times		0.28						1	mg/L	lb/dy	0.08		1
t. Magnesium, Total (7439-95-4)	\times		15						1	mg/L	lb/dy	14		1
u. Molybdenum, Total (7439-98-7)		\times	<0.010						1	mg/L	lb/dy	<0.010		1
v. Manganese, Total (7439-96-5)	\times		0.035						1	mg/L	lb/dy	0.024		1
w. Tin, Total (7440-31-5)	\times		<0.060						1	mg/L	lb/dy	<0.060		1
x. Titanium, Total (7440-32-6)	\times		<0.005						1	mg/L	lb/dy	<0.005		1

				E	PA I.D. NUM	ABER (copy from Ite	m 1 of Form 1) OUTFALL NUN	IBER						
CONTINUED FROM	M PAGE 3 (OF FORM 2	-C			IL0000108		021	L						
PART C - If you a fraction fraction provide dischar pollutar briefly d	are a primar is that apply is), mark "X the results ged in conc nts which yo describe the	y industry a y to your ind " in column of at least o entrations o bu know or t	nd this out dustry and 2-b for eacone analysi of 10 ppb of have reasone pollutan	fall contains proces for ALL toxic meta ch pollutant you kn is for that pollutant, r greater, If you ma n to believe that you t is expected to be	ls, cyanides, ow or have If you mark rk column 2l u discharge	, and total phenols, reason to believe is column 2b for any b for acrolein, acryle in concentrations of	. If you are n s present. Ma pollutant, you onitrile, 2,4 d of 100 ppb or	ot required to marl ark "X" in column 2 a must provide the initrophenol, or 2-m greater. Otherwise	k column 2 -c for each results of a nethyl-4, 6 c e, for polluta	-a (secondary pollutant you t least one ar dinitrophenol, ants for which	r industries, not believe is abs alysis for that p you must provi you mark colu	nprocess wa ent. If you m collutant if yo de the result imn 2b, you	stewater outfalls, a hark column 2a for bu know or have rea s of at least one an must either submit	and nonreque any pollutar ason to belie alysis for ea at least one	uired GC/MS nt, you must eve it will be ach of these e analysis or
		2. MARK "X	л				EFFLUENT				4. UN	IITS		AKE (optiond	<i>l)</i>
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (if ave					a. LONG T AVERAGE V		
CAS NUMBER (if available)		BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	 b. NO. OF ANALYSES
METALS, CYANID	E, AND TOT	TAL PHENC	DLS												
1M. Antimony, Total (7440-36-0)	$\left \times \right $		$ \times $	<20						1	ug/L	lb/dy	<20		1
2M. Arsenic, Total (7440-38-2)	X		X	<20						1	ug/L	lb/dy	<20		1
3M. Beryllium, Total (7440-41-7)	X		X	<5						1	ug/L	lb/dy	<5		1
4M. Cadmium, Total (7440-43-9)	X		\times	<2						1	ug/L	lb/dy	<2		1
5M. Chromium, Total (7440-47-3)	X		\times	<4						1	ug/L	lb/dy	<4		1
6M. Copper, Total (7440-50-8)	\times		\times	16						1	ug/L	lb/dy	13		1
7M. Lead, Total (7439-92-1)	\times		\times	<10						1	ug/L	lb/dy	<10		1
8M. Mercury, Total (7439-97-6)	\times		\times	<1						1	ng/L	lb/dy	<1		1
9M. Nickel, Total (7440-02-0)	\times		\times	· <10						1	ug/L	lb/dy	<10		1
10M. Selenium, Total (7782-49-2)	\times		\times	<10						1	ug/L	lb/dy	12		1
11M. Silver, Total (7440-22-4)	\times		\times	<10						1	ug/L	lb/dy	<10		1
12M. Thallium, Total (7440-28-0)	\times		\times	<10						1	ug/L	lb/dy	<10		1
13M. Zinc, Total (7440-66-6)	\times		\times	<10						1	ug/L	lb/dy	<10		1
14M. Cyanide, Total (57-12-5)	\times		\times	<5						1	ug/L	lb/dy	<5		1
15M. Phenols, Total	\times		\times	<10						1	ug/L	lb/dy	<5		1
DIOXIN															
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	LTS			<u></u>							
							DACE						0.011	TIMUE ON	

CONTINUE ON REVERSE

	2	2. MARK "X	**			3. E	FFLUENT				4. UN	ITS	5. INTA	AKE (option	ıl)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (if ave					a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	V - VOLATIL	E COMPOU	JNDS			• • • • • • • • • • • • • • • • • • •		<u></u>				L	<u>. </u>		-1
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		X	<5						1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1								1975	Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	$ \times $		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomelhane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	<5						1	ug/L		<5		1
11V. Chloroform 67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane 75-27-4)	\times		\times	<5						1	ug/L		<5		1
I3V. Dichloro- Iifluoromethane 75-71-8)				Note 1									Note 1		
4V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- thane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- thylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	\times		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6) * *	\times		\times	<5						1	ug/L		<5		l
9V. Ethylbenzene 100-41-4)	·X		\times	<5						1	ug/L		<5		1
0V. Methyl romide (74-83-9)	X		X	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	\mathbf{X}^{\dagger}		X	<5						1	ug/L		<5		1

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO									_					Outf	all 021
	2	2. MARK "X	"				FFLUENT				4. UN	ITS	5. INTA	AKE (optiond	ıl)
1. POLLUTANT AND	a,	b.	с.	a, MAXIMUM DAI		b. MAXIMUM 30 I (if availat		c. LONG TERM VALUE (<i>if ave</i>					a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)					T	. <u>.</u>					_
22V. Methylene Chloride (75-09-2)	\times		X	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		X	<5						1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times	<u> </u>	\times	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	X		\times	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	X		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	- ACID COI	MPOUNDS													
IA. 2-Chlorophenol 95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- bhenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
BA. 2,4-Dimethyl- henol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
5A. 2,4-Dinitro- henol (51-28-5)	\times		\times	<50						1	ug/L		<50		1
A. 2-Nitrophenol 88-75-5)	\times		\times	<10						1	ug/L		<10		1
A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L	_	<50		1
A. P-Chloro-M- Cresol (59-50-7)	X		\times	<10						1	ug/L		<10	-	1
A. Pentachloro- henol (87-86-5)	\times		\times	<50						1	ug/L		<50		1
0A. Phenol 108-95-2)	X		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		X	<50						1	ug/L		<50		1

.

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

	2	2. MARK "X	n			3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	ı/)
1. POLLUTANT AND	· a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (if ava		1.110.05	001051		a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – BASE/NE	EUTRAL CO	OMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	$ $ \times		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	X		\times	< 80						1	ug/L		< 80		1
5B. Benzo (a) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (<i>a</i>) Pyrene (50-32-8)	\times		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
8B. Benzo (ghi) Perylene (191-24-2)	\times		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		<10		1
10B. Bis (<i>2-Chloro- ethoxy</i>) Methane (111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- athyl) Ether (111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
13B. Bis (<i>2-Ethyl-</i> <i>iexyl</i>) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
14B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
15B. Butyl Benzyl Phthalate (85-68-7)	\times		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- haphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	\times		X	<10						1	ug/L		<10		1.
9B. Dibenzo (a,h) Anthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	X		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		X	<10						1	ug/L		<10		1

CONTINUED FRO		6 2. MARK "X		1		2 0	FFLUENT				4. UN		5 INT	AKE (optiona	all 021
1. POLLUTANT AND			1	a. MAXIMUM DA		b. MAXIMUM 30 ((if availat	DAY VALUE	c. LONG TERM VALUE (if av		1	4. 01		a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	a. TESTING REQUIRED		C. BELIEVED ABSENT			(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION		d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	L	L			(2) 11 100	0011021111111011	(1) 100 (000		_ (2) ## 100		L	I	CONCENTION	(2) 11/100	
22B. 1,4-Dichloro- benzene (106-46-7)	$ \times $		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	X		X	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		X	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		\times	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\times		\times	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		X	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	\times		\times	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		\times	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L	_	<10		. 1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone (78-59-1)	\times		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	X		\times	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	\times		\times	<10						1	ug/L		<10		1
11B, N-Nitro- sodimethylamine 62-75-9)	\times		\times	<10						1	ug/L		<10		1
12B. N-Nitrosodi- N-Propylamine 621-64-7)	X		\times	<10						1	ug/L		<10		1

CONTINUE ON REVERSE

CONTINUED FRC															fall 021
	2	2. MARK "X	n +				FFLUENT	<u>, </u>			4. UN	ITS	5. INT.	AKE (optiond	ıl)
1. POLLUTANT AND	a.	b.	C,	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (if ava	१ AVRG. गilable)				a. LONG T AVERAGE \		
CAS NUMBER (if available)	REQUIRED	I	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d, NO. OF ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	N – BASE/NE	EUTRAL CO	DMPOUND	S (continued)									_		
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B, Phenanlhrene (85-01-8)	\times		\times	<10						1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		X	<10						1	ug/L		<10		1
GC/MS FRACTION	I – PESTICI	DES													•
1P. Aldrin (309-00-2)			X		5.6.44 B				Ann A						
2P. α-BHC (319-84-6)			Х												
3P. β-BHC (319-85-7)			X												
4P. γ-BHC (58-89-9)			X												
5P. δ-BHC (319-86-8)			X												
6P. Chlordane (57-74-9)			X												
7P. 4,4'-DDT (50-29-3)			X												
8P. 4,4'-DDE (72-55-9)			X												
9P. 4,4'-DDD (72-54-8)			X												
10P. Dieldrin (60-57-1)			\times												
11Ρ. α-Enosulfan (115-29-7)			X												
12P. β-Endosulfan (115-29-7)			\times												
13P. Endosulfan Sulfate (1031-07-8)			\times												
14P. Endrin (72-20-8)			\times												
15P. Endrin Aldehyde (7421-93-4)			\times												
16P. Heptachlor (76-44-8)			\times												

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
CONTINUED FROM					I	L0000108		02	21						
		2. MARK "X'	,	I		3. E	FFLUENT		·		4. UN	ITS	5. INT/	AKE (optiona	7/)
1. POLLUTANT AND	a,	ь.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (<i>if availa</i>)	DAY VALUE	c. LONG TERN VALUE (if ave					a. LONG T AVERAGE \	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	- PESTICI	DES (contin	ued)		ENTRATION (2) MASS CONCENTRATION (2) MASS C										
17P. Heptachlor Epoxide (1024-57-3)			\times												
18P. PCB-1242 (53469-21-9)			\times	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		. 1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

									an a		201101		DUTFALL NO)
V. INTAKE AN	D EFFLUE	NT CHARAG	CTERISTICS (contin	iued from page	3 of Form 2-C)								022	·.
PART AYou	must provid	ie the result	s of at least one and	alysis for every p	collutant in this tabl	le. Complete o	ne table for each c	utfall. See ins	tructions for add			-		
					2. EFFLU					3. UNI (specify if			. INTAKE (optional)	
			JM DAILY VALUE	(if a	A 30 DAY VALUE	c. LOI	NG TERM AVRG. ' (if available)	VALUE	d. NO. OF	a. CONCEN-		a. LONG T AVERAGE V		- b, NO, I
1. POLLUT	ANT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRAT	ION (2) MASS	(1) CONCE		(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYS
a. Biochemical Demand <i>(BOD</i>)		<1							1	mg/L	lb/dy	4.4		1
b. Chemical Ox Demand (<i>COD</i>)		16							1	mg/L	lb/dy	14		1
c. Total Organic (<i>TOC</i>)	c Carbon	6.	D						1	mg/L	lb/dy	6.2		1
d. Total Suspen Solids (<i>TSS</i>)	nded	6.1	В						1	mg/L	lb/dy	12		1
e. Ammonia (<i>as</i>	N)	<0.1	10						1	mg/L	lb/dy	<0.10		1
f. Flow	V	ALUE	0.0	VALUE 26	5.25	VALUE	66.17		cont	MGD		VALUE		
g, Temperature (winter)	V	ALUE	15.8	VALUE 3	1.0	VALUE	23.6		cont	°C		VALUE		
h. Temperature (summer)	V	ALUE	м _{ен}	VALUE 4	0.3	VALUE	33.8		cont	°C		VALUE		
i. pH	N	NINIMUM 7.45	MAXIMUM 8.23	MINIMUM 6.9	MAXIMUM 7.6				1,24	STANDARD	UNITS			
dire	ctly, or ind		each nollutant you			st provide the	results of at least				lutants for w	umn 2a for any pollu /hich you mark colu		
		ta or an expl		sence in your di	scharge, Complete	one table for	each outfall. See th	e instructions	for additional de	etails and require	ements.			
		ta or an expl RK "X"	xpressly, in an efflu	sence in your di	scharge, Complete 3.	EFFLUENT		e instructions	for additional de	etails and require 4. UN		~	AKE (optiona	·
. POLLUTANT AND	a.	ta or an expl RK "X"	xpressly, in an efflu	sence in your di	scharge, Complete	EFFLUENT	each outfall. See th c. LONG TERM (if avai	e instructions	for additional de	etails and require 4. UN		5. INT a. LONG TERM VALUE	AVERAGE	1)
. POLLUTANT		ta or an expl RK "X" b.	xpressly, in an efflu anation of their pres	sence in your di	scharge, Complete 3. b. MAXIMUM 30	EFFLUENT	c. LONG TERM	e instructions AVRG. VALUI lable)	for additional de	a. CONCEN		a, LONG TERM VALUE	AVERAGE	/) b. NO. C
I. POLLUTANT AND CAS NO.	a. BELIEVED	ta or an expl RK "X" b. BELIEVED	xpressly, in an efflu lanation of their pres a. MAXIMUM DA	Sence in your di	scharge, Complete 3. b. MAXIMUM 30 (<i>if availa</i> (1)	EFFLUENT DAY VALUE ble)	c. LONG TERM (<i>if avai</i>	e instructions AVRG. VALUI lable)	for additional de	a. CONCEN		a. LONG TERM VALUE (1) CONCENTRATION	AVERAGE	·
. POLLUTANT AND CAS NO. (<i>if available</i>) . Bromide	a. BELIEVED	ta or an expl RK "X" b. BELIEVED ABSENT	xpressly, in an efflu anation of their pres a. MAXIMUM DA (1) CONCENTRATION	Sence in your di	scharge, Complete 3. b. MAXIMUM 30 (<i>if availa</i> (1)	EFFLUENT DAY VALUE ble)	c. LONG TERM (<i>if avai</i>	e instructions AVRG. VALUI lable)	for additional de	a. CONCEN	b. MASS	a. LONG TERM VALUE (1) CONCENTRATION <1.0	AVERAGE	b. NO. C ANALYSI
. POLLUTANT AND CAS NO. (<i>if available</i>) . Bromide 24959-67-9) . Chlorine, Total lesidual	a. BELIEVED	ta or an expl RK "X" b. BELIEVED ABSENT	xpressly, in an efflu anation of their pres a. MAXIMUM DA (1) CONCENTRATION <1.0	Sence in your di	scharge, Complete 3. b. MAXIMUM 30 (<i>if availa</i> (1) CONCENTRATION	EFFLUENT DAY VALUE ble)	c. LONG TERM (if avai (1) CONCENTRATION	e instructions AVRG. VALUI lable)	for additional de E d. NO. OF ANALYSES	a. CONCEN TRATION	IITS b. MASS lb/dy	a. LONG TERM VALUE (1) CONCENTRATION <1.0	AVERAGE	/) b. NO. C ANALYSI 1
I. POLLUTANT AND CAS NO. (<i>if available</i>) . Bromide 24959-67-9) . Chlorine, Total	a. BELIEVED	ta or an expl RK "X" b. BELIEVED ABSENT	xpressly, in an efflu anation of their pres a. MAXIMUM DA (1) CONCENTRATION <1.0	Sence in your di	scharge, Complete 3. b. MAXIMUM 30 (<i>if availa</i> (1) CONCENTRATION	EFFLUENT DAY VALUE ble)	c. LONG TERM (if avai (1) CONCENTRATION	e instructions AVRG. VALUI lable)	for additional de E d. NO. OF ANALYSES 1 1, 24	a. CONCEN TRATION mg/L mg/L	HTS b. MASS lb/dy lb/dy 	a. LONG TERM VALUE (1) CONCENTRATION <1.0	AVERAGE	b. NO. C ANALYS 1
I. POLLUTANT AND CAS NO. (<i>if available</i>) . Bromide 24959-67-9) . Chlorine, Total tesidual . Color	a. BELIEVED	ta or an expl RK "X" b. BELIEVED ABSENT	xpressly, in an efflu anation of their pres a. MAXIMUM DA (1) CONCENTRATION <1.0	Sence in your di	scharge, Complete 3. b. MAXIMUM 30 (<i>if availa</i> (1) CONCENTRATION	EFFLUENT DAY VALUE ble)	c. LONG TERM (if avai (1) CONCENTRATION	e instructions AVRG. VALUI lable)	for additional de d. NO. OF ANALYSES 1 1, 24- 0	a. CONCENTRATION mg/L mg/L	HTS b. MASS lb/dy lb/dy 	a. LONG TERM VALUE (1) CONCENTRATION <1.0 <0.05	AVERAGE (2) MASS	b. NO. C ANALYSI 1 1 0
I. POLLUTANT AND CAS NO. (<i>if available</i>) . Bromide 24959-67-9) . Chlorine, Total tesidual . Color . Fecal Coliform . Fluoride	a. BELIEVED	ta or an expl RK "X" b. BELIEVED ABSENT	xpressly, in an efflu anation of their pres a. MAXIMUM DA (1) CONCENTRATION <1.0 0.14	Sence in your di	scharge, Complete 3. b. MAXIMUM 30 (<i>if availa</i> (1) CONCENTRATION	EFFLUENT DAY VALUE ble)	c. LONG TERM (if avai (1) CONCENTRATION	e instructions AVRG. VALUI lable)	for additional de d. NO. OF ANALYSES 1 1,24 0 0	a. CONCENTRATION mg/L mg/L CFU/0.11	ITS b. MASS lb/dy lb/dy 	a. LONG TERM VALUE (1) CONCENTRATION <1.0 <0.05	AVERAGE (2) MASS	/) b. NO. C ANALYS 1 1 0 1

Total Residual Chlorine obtained during regulated condenser chlorination period at a point

representative of the cooling water discharge flume.

ITEM V-B CON												Ou	tfall 022	
		RK "X"				. EFFLUENT	h			4. UNI	TS	5. INT	AKE (option	al)
1. POLLUTANT AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DA		b. MAXIMUM 30 (<i>if availa</i>		c. LONG TERM A (if availa		d. NO, OF	a. CONCEN-		a. LONG T AVERAGE V		b. NO. OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	$ \times $		<1.1						1	mg/L	lb/dy	1.1		1
h. Oil and Grease		\times	<5						1	mg/L	lb/dy	<5		1
i. Phosphorus (as P), Total (7723-14-0)	\times		<0.10						1	mg/L	lb/dy	<0.10		1
j. Radioactivity														
(1) Alpha, Total									0					0
(2) Beta, Total						_			0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (<i>as SO</i> 4) (14808-79-8)	\times		62						1	mg/L	lb/dy	55		1
I. Sulfide (as S)		\times	<2.0						1	mg/L	lb/dy	<2.0		1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0						1	mg/L	lb/dy	<2.0		1
n. Surfactants		\times	<0.10						1	mg/L	lb/dy	0.19		1
o. Aluminum, Total (7429-90-5)	\mathbf{X}^{\prime}		0.096						1	mg/L	lb/dy	<0.050		1
p. Barium, Total (7440-39-3)	\times		0.07						1	mg/L	lb/dy	0.06		1
q. Boron, Total (7440-42-8)	\times		0.26						1	mg/L	lb/dy	0.35		1
r. Cobalt, Total (7440-48-4)		\times	<0.005						1	mg/L	lb/dy	<0.005		1
s. Iron, Total (7439-89-6)	\times		0.28						1	mg/L	lb/dy	0.08		1
t. Magnesium, Total (7439-95-4)	\times		15						1	mg/L	lb/dy	14		1
u. Molybdenum, Total (7439-98-7)		\times	<0.010						1	mg/L	lb/dy	<0.010		1
v. Manganese, Total (7439-96-5)	\times		0.035						1	mg/L	lb/dy	0.024		1
w. Tin, Total (7440-31-5)	\times		<0.060				•		1	mg/L	lb/dy	<0.060		1
x. Titanium, Total (7440-32-6)	\times		<0.005						1	mg/L	lb/dy	<0.005		1

ITEM V & CONTINUED EDOM EBONT

Outfall 022

EPA Form 3510-2C (8-90)

				E	PA I.D. NUM	MBER (copy from Ite.	m 1 of Form 1) OUTFALL NUN	IBER						
CONTINUED FROM	1 PAGE 3 C	OF FORM 2	-C			IL0000108		022	2						
PART C - If you a fraction fraction provide discharg pollutan briefly d	re a primary s that apply s), mark "X" the results ged in conce ts which yo lescribe the	y industry a to your ind in column of at least o entrations o u know or h	nd this out dustry and 2-b for eac one analysi of 10 ppb of have reaso ne pollutan	for ALL toxic meta ch pollutant you kn is for that pollutant. r greater. If you ma n to believe that yo	ls, cyanides ow or have If you mark rk column 2l u discharge	er, refer to Table 2c , and total phenols, reason to believe is column 2b for any b for acrolein, acryle in concentrations c . Note that there a	If you are n s present. Ma pollutant, you onitrile, 2,4 d of 100 ppb or	ot required to mark ark "X" in column 2 I must provide the initrophenol, or 2-m greater. Otherwise	k column 2- -c for each results of a hethyl-4, 6 c e, for polluta	a (secondary pollutant you t least one an linitrophenol, ants for which	industries, nor believe is abs alysis for that p you must provin you mark colu	nprocess wa ent. If you m pollutant if yo de the result imn 2b, you	stewater outfalls, a nark column 2a for ou know or have rea s of at least one an must either submit	and nonrequ any polluta ason to beli alysis for e at least one	uired GC/MS nt, you must eve it will be ach of these e analysis or
		2. MARK "X				<u>3, E</u>	FFLUENT				4. UN	IITS	5. INT/	KE (optiona	al)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERN VALUE (if ave					a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED			(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	Γ	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANIDE	, AND TOT	AL PHENC	DLS	. L		L		<u> </u>	<u>, , , , , , , , , , , , , , , , , , , </u>					(-)	-l
1M. Antimony, Total (7440-36-0)	X		\times	<20						1	ug/L	lb/dy	<20		1
2M. Arsenic, Total (7440-38-2)	X		\times	<20						1	ug/L	lb/dy	<20		1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5						1	ug/L	lb/dy	<5		1
4M, Cadmium, Total (7440-43-9)	\times		\times	<2						1	ug/L	lb/dy	<2		1
5M. Chromium, Total (7440-47-3)	\times		\times	<4						1	ug/L	lb/dy	<4		1
6M. Copper, Total (7440-50-8)	\times		\times	16						1	ug/L	lb/dy	13		1
7M. Lead, Total (7439-92-1)	\times		\times	<10						1	ug/L	lb/dy	<10		1
8M. Mercury, Total (7439-97-6)	\times		\times	<1						1	ng/L	lb/dy	<1		1
9M. Nickel, Total (7440-02-0)	\times		\times	<10						1	ug/L	lb/dy	<10		1
10M. Selenium, Total (7782-49-2)	\times		\times	<10						1	ug/L	lb/dy	12		1
11M. Silver, Total (7440-22-4)	\times		\times	<10						1	ug/L	lb/dy	<10		1
12M. Thallium, Total (7440-28-0)	\times		\times	<10						1	ug/L	lb/dy	<10		1
13M. Zinc, Total (7440-66-6)	\times		\times	<10						1	ug/L	lb/dy	<10		1
14M. Cyanide, Total (57-12-5)	\times		\times	<5						1	ug/L	lb/dy	<5		1
15M. Phenols, Total	\times		\times	<10						1	ug/L	lb/dy	<5		1
DIOXIN 2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	_TS										

CONTINUED FRO		2. MARK "X	11			3. E	FFLUENT		-		4. UN	ITS	5. INT/	AKE (optiond	ıl)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (if ave		1 110 05			a, LONG T AVERAGE \	ERM	1
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS										······		·I
1V. Accrolein (107-02-8)	\times		\times	<50						1 .	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5						1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		< 5.		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\mathbf{X}_{i}		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	< 5						1	ug/L		<5		1
11V. Chloroform (67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane 75-27-4)	\times		\times	<5						1	ug/L		<5		1
I3V. Dichloro- Iifluoromethane 75-71-8)				Note 1									Note 1		
4V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- thane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- thylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	\times		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6) * *	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	X		\times	<5						1	ug/L		<5		1
0V. Methyl Iromide (74-83-9)	\times		X	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	XI		XI	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

	2	2. MARK "X	"	1		3. E	FFLUENT				4. UN	IITS	5. INT.	AKE (optiond	 al)
1. POLLUTANT AND	a,	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal	ble)	c. LONG TERI VALUE (if av					a. LONG T AVERAGE \	ERM	- <u></u>
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)											
22V. Methylene Chloride (75-09-2)	\times		\times	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5	,					1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		\times	<5.						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						. 1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	\times		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	– ACID COI	MPOUNDS													
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- ohenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A. 2,4-Dimethyl- ohenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
5A. 2,4-Dinitro- ohenol (51-28-5)	\times		\times	<50						1	ug/L		<50		1
6A. 2-Nitrophenol 88-75-5)	\times		\times	<10						1	ug/L		<10		1
A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
A. P-Chloro-M- Cresol (59-50-7)	\times		\times	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	\times		\times	<50						1	ug/L		<50		1
0A. Phenol 108-95-2)	\times		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		X	<50						1	ug/L		<50		1

.

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

CONTINUED FRO		ONT 2. MARK "X	1	T		3 6	FFLUENT				4. UN		5 1017		all 022
1. POLLUTANT AND	<u> </u>					b. MAXIMUM 30 I	DAY VALUE				4. UN		a, LONG T		
CAS NUMBER	a. TESTING REQUIRED	b. BELIEVED PRESENT	c. BELIEVED ABSENT	a. MAXIMUM DA	1	(if availat		VALUE (<i>if ave</i> (1)	1	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	AVERAGE \ (1) CONCENTRATION		b. NO. OF
(if available) GC/MS FRACTION			1	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	CONCENTRATION	(2) MASS	ANALISES	TRATION	D. WA35	CONCENTRATION	(2) MASS	ANALYSES
1B. Acenaphthene (83-32-9)	\times	[\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	X		X	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	X		X	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	X		\times	<80						1	ug/L		<80		1
5B. Benzo (<i>a</i>) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (a) Pyrene (50-32-8)	\times		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
8B. Benzo (ghi) Perylene (191-24-2)	\times		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		<10		1
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
13B. Bis (2- <i>Ethyl-</i> <i>hexyl</i>) Phthalate (117-81-7)	\times		\times	<10						1	ug/L		<10		1
14B. 4-Bromophenyl Phenyl Ether (101-55-3)	\times		\times	<10						1	ug/L		<10		1
15B. Butyl Benzyl Phthalate (85-68-7)	$\times \mid$		\times	<10						1	ug/L		<10		1
16B. 2-Chloro- naphthalene (91-58-7)	\times		\times	<10						1	ug/L		<10		1
17B. 4-Chloro- phenyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
18B. Chrysene 218-01-9)	\times		\times	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) Anthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	\times		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	XI		X	<10						1	ug/L		<10		1

CONTINUED FRO		2. MARK "X	37			3. E	FFLUENT				4. UN	IITS	5. INT/	AKE (optiona	all 022
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 E (if availab	AY VALUE	c. LONG TERN VALUE (if ava					a. LONG T AVERAGE \	ERM	
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	- b. NO. OF ANALYSES
GC/MS FRACTION	N – BASE/N	EUTRAL CO	OMPOUND	S (continued)											
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		\mathbf{X}	<20						1	ug/L		. <20		1
24B. Diethyl Phthalate (84-66-2)	\times		\mathbf{X}	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		\times	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10 .		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		\times	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\times		\times	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		\times	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	\times		\times	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		\times	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone (78-59-1)	X		X	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	X		X	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	X		\times	<10						1	ug/L		<10		1
11B. N-Nitro- sodimethylamine 62-75-9)	\times		\times	<10						· 1	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine 621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUE ON REVERSE

.

CONTINUED FRO														Out	fall 022
		2. MARK "X	"	ļ			EFFLUENT	· · · · · · · · · · · · · · · · · · ·			4. UN	IITS	5. INT/	AKE (optiond	al)
1. POLLUTANT AND	a,	b. BELIEVED	C,	a. MAXIMUM DAI	LY VALUE	b, MAXIMUM 30 (if availa	ble)	c. LONG TERN VALUE (<i>if ave</i>	ailable)				a. LONG T AVERAGE \		
CAS NUMBER (if available)		PRESENT	ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. O ANALYSE
GC/MS FRACTION	I – BASE/NE	EUTRAL CO	DMPOUND	S (continued)											
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	X		\times	<10						1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10						1	ug/L		<10		1
GC/MS FRACTION	I - PESTICI	DES													
1P. Aldrin (309-00-2)			X												
2P. α-BHC (319-84-6)			\times												
3P. β-BHC (319-85-7)			\times												
4Ρ. γ-ΒΗC (58-89-9)			X												
5Ρ. δ-BHC (319-86-8)			\times												
6P. Chlordane (57-74-9)			\times												
7P. 4,4'-DDT (50-29-3)			\times												
3P. 4,4'-DDE (72-55-9)			\times												
9P. 4,4'-DDD 72-54-8)			\times												
10P. Dieldrin 60-57-1)			\times												
1P. α-Enosulfan 115-29-7)			\times					k							
2P.β-Endosulfan 115-29-7)			\times												
3P. Endosulfan Sulfate (1031-07-8)			\times												
4P. Endrin 72-20-8)			\times												
5P. Endrin Idehyde 7421-93-4)			\times												
6P. Heptachlor 76-44-8)			\times												

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
CONTINUED FRO	M PAGE V-8	в			I	L0000108		02	22						
	2	2. MARK "X'	,			3. E	EFFLUENT		<u> </u>		4. UN	IITS	5. INT/	AKE (optiona	al)
1. POLLUTANT AND CAS NUMBER	a.	b.	C.	a. MAXIMUM D	AILY VALUE	· · · · · · · · · · · · · · · · · · ·		c. LONG TERM VALUE (<i>if av</i>					a. LONG T AVERAGE \		
(if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	- PESTICI	DES (continu	ued)												J
17P. Heptachlor Epoxide (1024-57-3)			X												
18P. PCB-1242 (53469-21-9)	×		\times	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			X	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

.

EPA I.D. NUMBER (copy from Item 1 of Form 1) II_0000108

OLE MOTION															_	
V. INTAKE AN	D EFFLU	ENT CHARA	CTERI	ISTICS (contin	ued from page	e 3 of	Form 2-C)								DUTFALL NO).
PART A -You	must prov	ide the result	ts of at	t least one ana	lysis for every	pollul	tant in this tabl	e. Complete o	ne table for eac	h outfall. See ir	structions for ad	ditional details.	nond ann suit fàilige na muidide			
							2. EFFLU					3. UNI (specify if		1	INTAKE (optional)	
		a. MAXIMI	UM DA	AILY VALUE	(if	availa	DAY VALUE	c. LOł	NG TERM AVR (if available)		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \		
1. POLLUT	ANT	(1) CONCENTRA		(2) MASS	(1) CONCENTRAT	FION	(2) MASS	(1) CONCE	NTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Demand (BOD)		<4.0		<2							1	mg/L	lb/dy	4.4	2.5	1
b. Chemical Ox Demand (<i>COD</i>)		<6.0		<3							1	mg/L	lb/dy	14	8	1
c. Total Organio (<i>TOC</i>)	c Carbon	<0.5	0	<1							1	mg/L	lb/dy	6.2	4	1
d. Total Susper Solids (<i>TSS</i>)	nded	<4.0		<2							1	mg/L	lb/dy	12	7	1
e. Ammonia (<i>as</i>	: N)	0.5	1	<1							1	mg/L	lb/dy	<0.10	<1	1
f. Flow	VALUE 0.0685 VALUE 0.0360						VALUE	0.0360		1,5,17	MGD		VALUE			
g. Temperature (winter)		VALUE	28		VALUE			VALUE	.,		1	°C		VALUE		
h. Temperature (summer)		VALUE			VALUE			VALUE			0	°C		VALUE		
i. pH		MINIMUM 6.94		MAXIMUM 7.12	MINIMUM		MAXIMUM				1	STANDARD	UNITS			
dire	ctly, or in	directly but e	express	sly, in an efflu	ent limitations	guide	eline, you mus	st provide the	results of at lea	ast one analysi	s for that polluta	to be absent. If y ant. For other pol details and require	lutants for v	umn 2a for any pollu which you mark colu	tant which is mn 2a, you	limited either must provide
	2. M	ARK "X"						EFFLUENT			<u></u>	4. UN	IITS		AKE (optiona	<i>ıl</i>)
1. POLLUTANT AND	a.	b.	a. I	MAXIMUM DA	ILY VALUE	b. I	MAXIMUM 30 (if availa			M AVRG. VAL vailable)				a. LONG TERM VALUI		
CAS NO. (if available)	BELIEVE PRESEN	D BELIEVED	CON	(1) ICENTRATION	(2) MASS	CON	(1) ICENTRATION	(2) MASS	(1) CONCENTRAT	ION (2) MAS	d. NO. OF ANALYSE		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		\times		<1.0	<0.6						1	mg/L	lb/dy	<1.0	<0.6	1
b. Chlorine, Total Residual		\times									0			<0.05		1
c. Color		\times									0					0
1. Fecal Coliform		X									0	CFU/0.11		3		1
e. Fluoride 16984-48-8)		\times		<0.25	<0.1						1	mg/L	lb/dy	0.31	0.2	1
. Nitrate-Nitrite as M		$ \times $		0.68	0.4						1	mg/L	lb/dy	0.81	0.5	1

CONTINUE ON REVERSE

.

	2. MA	RK "X"			3.	EFFLUENT				4. UNI	TS	5. IN	AKE (option	al)
1. POLLUTANT AND	a.	b.	a. MAXIMUM D/	AILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A (if availa					a. LONG T AVERAGE	ERM	1
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)		\times	<1.1	<0.6					1	mg/L	lb/dy	1.1	0.6	1
h. Oil and Grease		\times	<5.3	<3			<6.5	<2	1,2	mg/L	lb/dy	<5	<2	1
i. Phosphorus (as P), Total (7723-14-0)		\times	<0.10	<0.1					1	mg/L	lb/dy	<0.10	<0.1	1
j. Radioactivity														
(1) Alpha, Total									· 0					0
(2) Beta, Total									0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (as SO ₄) (14808-79-8)		\times	<1.0	<0.6					1	mg/L	lb/dy	55	31	1
1. Sulfide (as S)		\times	<2.0	<1					1	mg/L	lb/dy	<2.0	<1	1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0	<1					1	mg/L	lb/dy	<2.0	<1	1
n. Surfactants		\times	<0.10	<0.1					1	mg/L	lb/dy	0.19	0.1	1
o. Aluminum, Total (7429-90-5)		\times	<0.050	<0.1					1	mg/L	lb/dy	<0.050	<0.1	1
p. Barium, Total (7440-39-3)		\times	<0.010	<0.1					1	mg/L	lb/dy	0.06	<0.1	1
q. Boron, Total (7440-42-8)		\times	0.03	<0.1					1	mg/L	lb/dy	0.35	0.2	1
r. Cobalt, Total (7440-48-4)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1
s. Iron, Total (7439-89-6)		\times	0.08	<0.1					1	mg/L	lb/dy	0.08	<0.1	1
t. Magnesium, Total (7439-95-4)		\times	<0.050	<0.1					1	mg/L	lb/dy	14	8	1
u. Molybdenum, Total (7439-98-7)		\times	<0.010	<0.1					. 1	mg/L	lb/dy	<0.010	<0.1	1
/. Manganese, Fotal (7439-96-5)		\times	<0.010	<0.1					· 1	mg/L	lb/dy	0.024	<0.1	1
w. Tin, Totał 7440-31-5)		\times	<0.060	<0.1				•	1	mg/L	lb/dy	<0.060	<0.1	1
c. Titanium, Total 7440-32-6)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1

.

.

					EPA I.D. NUN	ABER (copy from Iter	m 1 of Form 1	OUTFALL NUM	IBER						
CONTINUED FROM	A PAGE 3 (DE FORM 2	-C			IL0000108		A01							
PART C - If you a fraction fraction provide dischar pollutar briefly c	re a primar s that apply s), mark "X" the results ged in conc its which yo describe the	y industry a v to your inc " in column of at least c entrations o bu know or h	nd this out lustry and 2-b for ea one analys f 10 ppb o nave reaso ne pollutan	for ALL toxic meta ch pollutant you kr is for that pollutant r greater. If you ma on to believe that yo	als, cyanides, now or have . If you mark ark column 2t ou discharge	er, refer to Table 20 and total phenols, reason to believe is column 2b for any o for acrolein, acryle in concentrations c . Note that there an	If you are n present. Ma pollutant, you politrile, 2,4 di of 100 ppb or	ot required to mark ark "X" in column 2 I must provide the nitrophenol, or 2-m greater, Otherwise	c column 2- -c for each results of a nethyl-4, 6 c e. for polluta	-a (secondary pollutant you t least one an dinitrophenol, ants for which	r industries, no believe is abs alysis for that p you must provi you mark colu	nprocess wa ent. If you m pollutant if yo ide the result umn 2b, you	stewater outfalls, lark column 2a fo lu know or have re s of at least one a must either submi	and nonreque any pollutar ason to belia nalysis for ea t at least one	<i>iired GC/MS</i> nt, you must eve it will be ach of these analysis or
	:	2. MARK "X	"				FFLUENT			·····	4. UN	IITS	5. INT	AKE (optiona	ıl)
1. POLLUTANT AND	a,	b.	c.	a. MAXIMUM DA	ALLY VALUE	b. MAXIMUM 30 I (if availai		c. LONG TERN VALUE (if ave					a. LONG AVERAGE		
CAS NUMBER (if available)	TESTING		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION		b. NO. OF
METALS, CYANIDE	E, AND TOT	TAL PHENO	LS						•		• • • • • • • • • • • • • • • • • • •		<u>. </u>	<u></u>	-l
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<0.01					1	ug/L	lb/dy	<20	<0.01	1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20	<0.01					1	ug/L	lb/dy	<20	<0.01	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
4M. Cadmium, Total (7440-43-9)	\times		\times	<2	<0.01					1	ug/L	lb/dy	<2	<0.01	1
5M. Chromium, Total (7440-47-3)	\times		\times	<4	<0.01					1	ug/L	lb/dy	<4	<0.01	1
6M. Copper, Total (7440-50-8)	\times		\times	11	<0.01					1	ug/L	lb/dy	13	<0.01	1
7M. Lead, Total (7439-92-1)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
8M. Mercury, Total (7439-97-6)	\times		\times	3.2	<0.01					1	ng/L	lb/dy	<1	<0.01	1
9M. Nickel, Total (7440-02-0)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
10M. Selenium, Total (7782-49-2)	\times		$\underline{\times}$	<10	<0.01					1	ug/L	lb/dy	12	<0.01	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
12M. Thallium, Total (7440-28-0)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
13M. Zinc, Total (7440-66-6)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
14M. Cyanide, Γotal (57-12-5)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
15M. Phenols, rotal	\times		\times	<10	<0.01					1	ug/L	lb/dy	<5	<0.01	1
NIXOIC															
2,3,7,8-Tetra- hlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	LTS										
DA E 2540.00							DACE								

	2	2. MARK "X	"			3. E	FFLUENT				4. UN	ITS	5. INTA	AKE (optiond	ıl)
1. POLLUTANT AND CAS NUMBER	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (<i>if av</i>		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE V		
(if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS								4				
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5				i		1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	<5						1	ug/L		<5		1
11V. Chloroform (67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane 75-27-4)	\times		\times	< 5						1	ug/L		<5		1
I3V. Dichloro- Iifluoromethane 75-71-8)				Note 1									Note 1		
4V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- thane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- thylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	X		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6) * *	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	\times		\times	<5						1	ug/L		<5		1
0V. Methyl romide (74-83-9)	X		\times	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	XT		X	<5						1	ug/L		<5		1

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO		2. MARK "X	u	1		3 F	FFLUENT		 	4. UN		5 INT/	AKE (optiona	all A01
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DAI	ILY VALUE	b. MAXIMUM 30 [(if availab	DAY VALUE	c. LONG TERM VALUE (if ava		4. 01		a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPOL	JNDS (con	tinued)					 		<u></u>	·		
22V. Methylene Chloride (75-09-2)	\times		\times	<5					1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5					1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5					1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		\times	<5					1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20					1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5					1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5					1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5					 1	ug/L	_	<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1								Note 1		
31V. Vinyl Chloride (75-01-4)	\times		X	<5					1	ug/L		<5		1
GC/MS FRACTION	– ACID CO	MPOUNDS							 					
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10 .					 1	ug/L		<10		1
2A. 2,4-Dichloro- phenol (120-83-2)	\times		\times	<10					 1	ug/L		<10		1
3A. 2,4-Dimethyl- ohenol (105-67-9)	X		\times	<10 .					 1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	X		X	<50					 1	ug/L		<50		1
5A. 2,4-Dinitro- phenol (51-28-5)	\times		\times	<50					 1	ug/L		<50		1
SA, 2-Nitrophenol 88-75-5)	X		\times	<10					 1	ug/L		<10		1
A. 4-Nitrophenol 100-02-7)	\times		\times	<50					 1	ug/L		<50		1
BA. P-Chloro-M- Cresol (59-50-7)	X		X	<10					1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	X		X	<50					 1	ug/L		<50		1
0A. Phenol 108-95-2)	X		\times	<10					1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	$\times \mid$		\times	<50					1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

	. 2	2. MARK "X	"			3. E	FFLUENT				4. UN	ITS	5. INT/	AKE (optiond	ıl)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DAI	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (if avo					a. LONG T AVERAGE \		1
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	1	b. NO. OF
GC/MS FRACTION	- BASE/NE	EUTRAL CO	OMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						- 1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	\times		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	\times		\times	<80						1	ug/L		<80		1.
5B. Benzo (a) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (a) Pyrene (50-32-8)	\times		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- lluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
3B. Benzo (ghi) Perylene (191-24-2)	\times		\times	<10						1.	ug/L		<10		1
9B. Benzo (k) Fluoranthene 207-08-9)	\times		\times	<10						1	ug/L		<10		1
IOB. Bis (2-Chloro- thoxy) Methane 111-91-1)	\times		\times	<10						l	ug/L		<10		1
1B. Bis (2-Chloro- thyl) Ether 111-44-4)	\times		\times	<10						1	ug/L		<10		1
2B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
3B. Bis (<i>2-Ethyl- exyl</i>) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
4B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl hthalate (85-68-7)	\times		\times	<10						. 1	ug/L		<10		1
6B. 2-Chloro- aphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	X		\times	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) nthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	\times		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		X	<10						1	ug/L		<10		1

CONTINUED FRO														Outf	all A01
		2. MARK "X	n 1				FFLUENT	·····			4. UN	ITS		KE (optiona	ıl)
1. POLLUTANT AND CAS NUMBER	a,	b.	C.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 E (if availab		c. LONG TERN VALUE (<i>if ava</i>		d. NO. OF	a. CONCEN-		a, LONG T AVERAGE V		
(if available)	TESTING REQUIRED	J	BELIEVED ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	N - BASE/N	EUTRAL CO	OMPOUNE	S (continued)											
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		$ \times$	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		X	<10						1	ug/L		<10		1
26B. Di-N-Bulyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	X		\times	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\times		X	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		\times	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	X		X	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		X	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone (78-59-1)	\times		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	\times		X	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	\times		X	<10						1	ug/L		<10		1
41B. N-Nitro- sodimethylamine (62-75-9)	\times		\times	<10						1	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine (621-64-7)	X		\times	<10						1	ug/L		<10		1

CONTINUE ON REVERSE

CONTINUED FRO															fall A01
		2. MARK "X	1				FFLUENT			·····	4. UN	ITS		AKE (optiond	<i>al</i>)
1. POLLUTANT AND CAS NUMBER	a,	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 (if availa	ble)	VALUE (if ava	ailable)	d. NO. OF			a. LONG T AVERAGE \		
(if available)	TESTING REQUIRED	PRESENT		CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	1	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – BASE/NE	EUTRAL CO	DMPOUND	S (continued)		·····									
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	\times		\times	<10						1	ug/L		<10		1.
45B. Pyrene (129-00-0)	\times		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chiorobenzene (120-82-1)	\times		\times	<10						1	ug/L		<10		1
GC/MS FRACTION	I - PESTICI	DES		<u></u>		<u></u>		·					L		·
1P. Aldrin (309-00-2)			\times												
2P. α-BHC (319-84-6)			\times												
3P. β-BHC (319-85-7)			\times												
4Ρ. γ-ΒΗC (58-89-9)			\times												
5Ρ. δ-ΒΗϹ (319-86-8)			\times												
6P. Chlordane (57-74-9)			\times												
7P. 4,4'-DDT (50-29-3)			\times												
3P. 4,4'-DDE 72-55-9)			\times												
9P. 4,4'-DDD 72-54-8)			\times												
10P. Dieldrin 60-57-1)			X												
1P. α-Enosulfan 115-29-7)			\mathbf{X}												
2P. β-Endosulfan 115-29-7)			\mathbf{X}												
3P. Endosulfan Sulfate (1031-07-8)			\times												
4P. Endrin 72-20-8)			\times												
5P. Endrin Idehyde 7421-93-4)			\times												
6P. Heptachlor 76-44-8)			\times												

•

EPA Form 3510-2C (8-90)

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
CONTINUED FRO	M PAGE V-	2			II	L0000108		AC	1						
		2. MARK "X	u .	I		3. E	FFLUENT				4. UN	ITS	5, INTA	AKE (optiona	1)
1. POLLUTANT AND	a.	b,	с.	a, MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERN VALUE (if ava			- 001051		a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)		BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	I – PESTICI	DES (contin	ued)												
17P. Heptachlor Epoxide (1024-57-3)			\times												
18P. PCB-1242 (53469-21-9)			X	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L ·		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

SEE INSTRUCT	UNS.													
V. INTAKE AND	EFFLUE	NT CHARAG	CTERISTICS (conti	nued from page	3 of Form 2-C)								DUTFALL NO B01).
PART A -You m	nust provid	de the result	s of at least one an	alysis for every p	ollutant in this tab	le. Complete o	ne table for each o	utfall. See inst	ructions for add	titional details.				
					2. EFFLU					3. UNI (specify if			I. INTAKE (optional)	
			JM DAILY VALUE	(if a	1 30 DAY VALUE vailable)	c. LOI	NG TERM AVRG. V (if available)	ALUE	d. NO. OF	a. CONCEN-		a. LONG T AVERAGE		b. NO. OF
1. POLLUTA	NT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRAT	ION (2) MASS	(1) CONCE	ENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical C Demand (BOD)	Dxygen	<4	<0.1						1	mg/L	lb/dy	4.4	<0.1	1
b. Chemical Oxy Demand (COD)	gen	44	0.4						1	mg/L	lb/dy	14	0.1	1
c. Total Organic (<i>TOC</i>)	Carbon	18	0.2						1	mg/L	lb/dy	6.2	<0.1	1
d. Total Suspend Solids (<i>TSS</i>)	ied	<4	<0.1	6	0.2		4	<0.1	1,2,24	mg/L	lb/dy	12	0.1	1
e. Ammonia (<i>as I</i>	v)	<1	<0.1						1	mg/L	lb/dy	<0.10	<0.1	1
f. Flow	V	/ALUE 0	.0012	VALUE 0.	0033	VALUE	0.0018		1,2,24	MGD		VALUE		
g. Temperature (winter)			VALUE			1	°C		VALUE					
h. Temperature (<i>summer</i>)	V	ALUE		VALUE		VALUE			0	°C		VALUE		
i. pH	N	MINIMUM 7.21	MAXIMUM 8.05	MINIMUM	MAXIMUM				1	STANDARD	UNITS			
direct	tly, or ind titative da	irectly but ex ta or an expl		uent limitations	guideline, you mu scharge. Complete	st provide the one table for e	results of at least	one analysis t	for that polluta	nt. For other pol etails and require	llutants for w ements.	umn 2a for any pollu vhich you mark colu	imn 2a, you	must provide
1. POLLUTANT	2. MA	RK "X"				EFFLUENT				4. Uł	VITS		AKE (optiond	ıl)
AND	a. BELIEVED	b. BELIEVED	a. MAXIMUM D/		b. MAXIMUM 30 (if availa		c. LONG TERM A (if availe		d. NO. OF	a. CONCEN	_	a. LONG TERM VALU	=	b. NO. OF
	PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Bromide (24959-67-9)		$ \times $	<1.0	<0.01					1	mg/L	lb/dy	<1.0	<0.01	1
b. Chlorine, Total Residual		\times							0	mg/L	lb/dy	<0.05		1
c. Color		$ \times $							0					0
d. Fecal Coliform		$ \times $							0	CFU/0.11		3		1
e. Fluoride (16984-48-8)	\times		1.0	0.01					1	mg/L	lb/dy	0.31	<0.01	1
f. Nitrate-Nitrite (as N)	\times		0.80	<0.01					1	mg/L	lb/dy	0.81	<0.01	1

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

ITEM V-B CONT			-							r				tfall B01
1. POLLUTANT	2. MA	RK "X"			3. b. MAXIMUM 30	EFFLUENT	c. LONG TERM A	VRG VALUE	T	4. UNI	TS T	5. IN a. LONG 7	AKE (option	al)
AND	a.	b.	a. MAXIMUM D	AILY VALUE	(if availa		(if availa		1 10 05			AVERAGE		
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d, NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		1.8	0.01					1	mg/L	lb/dy	1.1	0.01	1
h. Oil and Grease		\times	<5	<0.05			<6		1,4	mg/L	lb/dy	<5	<0.05	1
i. Phosphorus (as P), Total (7723-14-0)	\times		0.71	<0.01		e			1	mg/L	lb/dy	<0.10	<0.01	1
j. Radioactivity														
(1) Alpha, Total									0	· ··· ·				0
(2) Beta, Total									0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k, Sulfate (as SO ₄) (14808-79-8)	\times		260	2.6					1	mg/L	lb/dy	55	0.6	1
I. Sulfide (as δ)		\times	2.7	0.03					1	mg/L	lb/dy	<2.0	<0.02	1
m. Sulfite (as SO3) (14265-45-3)		\times	2.8	0.03					1	mg/L	lb/dy	<2.0	<0.02	1
n. Surfactants		\times	0.16	<0.01					1	mg/L	lb/dy	0.19	<0.01	1
o. Aluminum, Total (7429-90-5)		\times	<0.050	<0.01					1	mg/L	lb/dy	<0.050	<0.01	1
p. Barium, Total (7440-39-3)	\times		0.22	<0.01					1	mg/L	lb/dy	0.06	<0.01	1
q. Boron, Total (7440-42-8)	\times		0.57	<0.01					1	mg/L	lb/dy	0.35	<0.01	1
r. Cobalt, Total (7440-48-4)		\times	<0.005	<0.01					1	mg/L	lb/dy	<0.005	<0.01	1
s. Iron, Total (7439-89-6)	\times		0.015	<0.01					1	mg/L	lb/dy	0.08	<0.01	1
. Magnesium, Total (7439-95-4)	\times		52	0.5					1	mg/L	lb/dy	14	0.1	1
u. Molybdenum, Total (7439-98-7)	\times		0.019	<0.01					1	mg/L	lb/dy	<0.010	<0.01	1
/. Manganese, l'otal 7439-96-5)		\times	<0.010	<0.01					1	mg/L	lb/dy	0.024	<0.01	1
v. Tin, Total 7440-31-5)		\times	<0.060	<0.01					1	mg/L	lb/dy	<0.060	<0.01	1
r. Titanium, Total 7440-32-6)		\times	<0.005	<0.01					1	mg/L	lb/dy	<0.005	<0.01	1

				E	PA I.D. NUM	BER (copy from Iter	m 1 of Form 1	OUTFALL NUM	IBER						
CONTINUED FROM	M PAGE 3 C	E FORM 2	-C			IL0000108		B01	-						
PART C - If you a fraction fraction provide dischar pollutar briefly d	re a primary s that apply s), mark "X" the results ged in conce ts which yo	y industry a to your inc in column of at least c entrations o u know or h reasons th	nd this out dustry and 2-b for eac one analysi of 10 ppb of nave reaso ne pollutan	for ALL toxic meta ch pollutant you kn is for that pollutant. r greater. If you ma n to believe that yo	ils, cyanides, iow or have i If you mark irk column 2t ou discharge	er, refer to Table 2c and total phenols, reason to believe is column 2b for any o for acrolein, acrylo in concentrations c Note that there a	. If you are n s present. Ma pollutant, you onitrile, 2,4 di of 100 ppb or	ot required to mark ark "X" in column 2 a must provide the a initrophenol, or 2-m greater. Otherwise	c column 2- -c for each results of a nethyl-4, 6 c , for polluta	-a (<i>secondar</i> y pollutant you t least one ar dinitrophenol, ants for which	r industries, nor believe is abs alysis for that p you must provie you mark colu	nprocess wa ent. If you m pollutant if yo de the result mn 2b, you	astewater outfalls, a nark column 2a for ou know or have re ts of at least one ar must either submit	and nonrequ any pollutar ason to beli nalysis for ea at least one	ired GC/MS nt, you must eve it will be ach of these analysis or
	2	2. MARK "X	11				FFLUENT				4. UN	ITS	5. INT.	AKE (optiond	al)
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (if ava					a. LONG 1 AVERAGE		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
METALS, CYANID	E, AND TOT	AL PHENC	DLS				F	,							
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<0.001					1	ug/L	lb/dy	<20	<0.001	1
2M. Arsenic, Total (7440-38-2)	\times		$ \times$	<20	<0.001					1	ug/L	lb/dy	<20	<0.001	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<0.001					1	ug/L	lb/dy	<5	<0.001	1
4M. Cadmium, Total (7440-43-9)	X		X	<2	<0.001					1	ug/L	lb/dy	<2	<0.001	1
5M. Chromium, Total (7440-47-3)	\times		\times	<4	<0.001					1	ug/L	lb/dy	<4	<0.001	1
6M. Copper, Total (7440-50-8)	\times	\times		35	<0.001					1	ug/L	lb/dy	13	<0.001	1
7M. Lead, Total (7439-92-1)	\times		X	<10	<0.001					1	ug/L	lb/dy	<10	<0.001	1
8M. Mercury, Total (7439-97-6)	\times		\times	62	<0.001					1	ng/L	lb/dy	<1	<0.001	1
9M. Nickel, Total (7440-02-0)	\times		\times	<10	<0.001					1	ug/L	lb/dy	<10	<0.001	1
10M. Selenium, Total (7782-49-2)	\times		\times	22	<0.001					1	ug/L	lb/dy	12	<0.001	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<0.001					1	ug/L	lb/dy	<10	<0.001	1
12M. Thailium, Total (7440-28-0)	\times		\times	<10	<0.001					1	ug/L	lb/dy	<10	<0.001	1
13M. Zinc, Total (7440-66-6)	\times		\times	<10	<0.001					1	ug/L	lb/dy	<10	<0.001	1
14M. Cyanide, Total (57-12-5)	\times		\times	<5	<0.001					1	ug/L	lb/dy	<5	<0.001	1
15M. Phenols, Total	\times		\times	<10	<0.001					1	ug/L	lb/dy	<5	<0.001	1
DIOXIN															
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	LTS										
DA E 0540.00							PAGE	1/0					0.01		

CONTINUE ON REVERSE

CONTINUED FRO		NT 2. MARK "X	н	I		3 5	FFLUENT				A . E (N)		5 INT.		fall B01
1. POLLUTANT			1			3. E		c. LONG TERM	AVRG,	1	4. UN	115	a. LONG T	AKE (optiona FRM	<i>u</i>)
	a.	b.	C.	a. MAXIMUM DA	LY VALUE	(if availal		VALUE (if ava	ailable)	d. NO. OF	a. CONCEN-		AVERAGE \		
CAS NUMBER (if available)		L	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. O ANALYSE
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS								L				
1V. Accrolein (107-02-8)	X		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5						1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomelhane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	X		. X	<5						1	ug/L		<5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	<5						1	ug/L		<5		1
11V. Chloroform 67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane 75-27-4)	\times		\times	<5						1	uġ/L		<5		1
I3V. Dichloro- tifluoromethane 75-71-8)				Note 1									Note 1		
4V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- ethane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- thylene (75-35-4)	X		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	X		X	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene * * 542-75-6)	\times		\times	<5						1	ug/L	-	<5		1
9V. Ethylbenzene 100-41-4)	\times		X	<5						1	ug/L		<5		1
0V. Methyl Iromide (74-83-9)	\times		\times	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	\mathbf{X}^{\dagger}		X	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO				T							I				all B01
1. POLLUTANT		2. MARK "X 1				3. E b. MAXIMUM 30	FFLUENT		1 41/00	T	4. UN			AKE (optiond	al)
AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. WAXIWOW 30		c. LONG TERN VALUE (if ave					a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)											•
22V. Methylene Chloride (75-09-2)	\times		\times	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5						1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		\times	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	\times		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	- ACID COI	MPOUNDS													
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10 .		1
2A. 2,4-Dichloro- ohenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
BA. 2,4-Dimethyl- ohenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
6A. 2,4-Dinitro- henol (51-28-5)	\times		\times	<50						1	ug/L	_	< 50		1
6A, 2-Nitrophenol 88-75-5)	\times		X	<10						1	ug/L		<10		1
A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
A. P-Chloro-M- Cresol (59-50-7)	\times		X	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	\times		X	<50						1	ug/L		<50		1
0A. Phenol 108-95-2)	\times		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		X	<50						1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

CONTINUED FRO		2. MARK "X	"	T		3. E	FFLUENT				4. UN	ITS	5. INTA	KE (optiona	/)
1. POLLUTANT AND	a,	b,	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERN VALUE (if ava					a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	– BASE/NE	EUTRAL CO	DMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	X		$ \times$	<10							ug/L		<10		1
3B. Anthracene (120-12-7)	X		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	\times		\times	<80						1	ug/L		<80		1
5B. Benzo (a) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (a) Pyrene (50-32-8)	\times		\times	<10			<u></u>			1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
8B. Benzo (ghi) Perylene (191-24-2)	\times		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		. <10		1
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (<i>2-Chloro-</i> z <i>thyl</i>) Ether (111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
13B. Bis (2- <i>Ethyl-</i> <i>iexyl</i>) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
14B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl Phthalate (85-68-7)	\times		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- haphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B, 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	Х		\times	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) Inthracene 53-70-3)	\times		\times	<10	-					1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	\times		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		XI	<10						1	ug/L	_	<10		1

CONTINUED FROM				• · · · · · · · · · · · · · · · · · · ·										Outf	all B01
	2	2. MARK "X					EFFLUENT				4. UN	IITS	5. INT/	AKE (optiona	l)
1. POLLUTANT AND	a.	b.	c. BELIEVED	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c, LONG TERM VALUE (<i>if av</i>					a. LONG T AVERAGE	/ALUE	
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT	ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – BASE/N	EUTRAL CO	OMPOUNE	S (continued)		•									
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		$ \times$	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	X		\times	<i0< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td>ug/L</td><td></td><td><10</td><td></td><td>1</td></i0<>						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		\times	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	X		Х	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		X	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10	·	1
33B. Hexachloro- benzene (118-74-1)	\times		\times	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		\times	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		X	<10						1	ug/L		<10		1
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	\times		\times	<10						1.	ug/L		<10		1
38B. Isophorone (78-59-1)	X		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	\times		\times	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	X		\times	<10						1	ug/L		<10		1
41B. N-Nitro- sodimethylamine (62-75-9)	\times		\times	<10						1	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine (621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUED FRO		2. MARK "X	u	1		3 6	FFLUENT				4. UN	IITO	E INT	AKE (option	fall B01
1. POLLUTANT AND				a. MAXIMUM DAI	ILY VALUE	b. MAXIMUM 30	DAY VALUE	c. LONG TERM VALUE (if av					a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	b. BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	- b. NO. OF ANALYSE
GC/MS FRACTION	I – BASE/NE	EUTRAL CO	MPOUND	S (continued)											
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	X		\times	<10						1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10						1	ug/L		<10		1
GC/MS FRACTION	- PESTICI	DES													
1P. Aldrin (309-00-2)			\times												
2P. α-BHC (319-84-6)			\times												
3P. β-BHC (319-85-7)			\times												
4Ρ. γ-BHC (58-89-9)			\times												
5Ρ. δ-ΒΗC (319-86-8)			\times												
3P. Chlordane (57-74-9)			\times												
7P. 4,4'-DDT (50-29-3)			\times												
3P. 4,4'-DDE 72-55-9)			X												
9P. 4,4'-DDD 72-54-8)			X												
0P. Dieldrin 60-57-1)			X												
1P. α-Enosulfan 115-29-7)			X												
2P. β-Endosulfan 115-29-7) 3P. Endosulfan			\mathbf{X}												
Sulfate (1031-07-8)			\times												
4P. Endrin 72-20-8)			\times												
5P. Endrin Idehyde 7421-93-4)			\times												
6P. Heptachlor 76-44-8)			\times												

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
					I	L0000108		в)1						
CONTINUED FRO				I							r				
	. 2	2. MARK "X'	" T				EFFLUENT			· · · · · · · · · · · · · · · · · · ·	4. UN			AKE (optiona	ıl)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERN VALUE (if av					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
GC/MS FRACTION	I – PESTICII	DES (contini	ued)												
17P. Heptachlor Epoxide (1024-57-3)			\times												
18P. PCB-1242 (53469-21-9)			\times	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1.
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			X	<0.5						1	ug/L		<0.5		1
25P, Toxaphene (8001-35-2)			\times												

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

							Barry Contractor of Contractor								
V. INTAKE AN	ID EFFLU	ENT CHARA	CTERISTICS (con	tinued from pag	e 3 of Fo	orm 2-C)	•							OUTFALL NC).
PART AYou	must prov	vide the result	s of at least one a	nalysis for every	/ pollutar	nt in this tab	le. Complete o	ne table for eac	h outfall. See in	structions for add	ditional details.				
						2. EFFLU	JENT				3. UNI (specify if			1. INTAKE (optional)	
			UM DAILY VALUE	(j	JM 30 D. f availabl	DAY VALUE le)	c. LOI	NG TERM AVR (if available)		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE		
1. POLLUT	ÍANT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRA		(2) MASS	(1) CONCI	ENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Demand (BOD)		<1	<2							1	mg/L	lb/dy	4.4	7	1
b. Chemical Ox Demand (<i>COD</i>)		26	40							1	mg/L	lb/dy	14	21	1
c. Total Organio (<i>TOC</i>)	c Carbon	7.	0 11							1	mg/L	lb/dy	6.2	9	1
d. Total Susper Solids (<i>TSS</i>)	nded	11	17							1	mg/L	lb/dy	12	18	1
e. Ammonia (<i>as</i>	s N)	<1.	0 <2							1	mg/L	lb/dy	<0.10	<1	1
f. Flow		VALUE (0.183	VALUE	0.780		VALUE	0.186		1,31,366	MGD		VALUE		
g. Temperature (winter)	1	VALUE	16	VALUE	0.780 JE VALU					1	°C		VALUE		
h. Temperature (summer)		VALUE		VALUE			VALUE			0	°C		VALUE		
i. pH		MINIMUM 7.01	MAXIMUM 7.20	MINIMUM	M	IAXIMUM				1	STANDARD	UNITS			
dire	ctly, or in	directly but e		fluent limitations	s guideli	ine, you mus	st provide the	results of at lea	ast one analysi	s for that polluta	nt. For other pol	lutants for w	umn 2a for any pollu vhich you mark colu		
	2. N	ARK "X"	ľ			3.	. EFFLUENT				4. UN	ITS	5. IN	AKE (optiond	<i>al</i>)
1. POLLUTANT AND	a.	b.	a. MAXIMUM [DAILY VALUE	b. MA	AXIMUM 30 (if availa	DAY VALUE		M AVRG. VALU vailable)				a. LONG TERM VALU		
CAS NO. (if available)	BELIEVE		(1) CONCENTRATION	(2) MASS	CONCE	(1) ENTRATION	(2) MASS	(1) CONCENTRAT	ON (2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		$ \times$	<1.0	<2						1	mg/L	lb/dy	<1.0	<2	1
b. Chlorine, Total Residual		\times								0	mg/L	lb/dy	<0.05		1
c. Color		\times								0					0
d. Fecal Coliform	$ $ \times									0	CFU/0.1L		3		1
e. Fluoride (16984-48-8)	\times		0.31	0.5						1	mg/L	lb/dy	0.31	0.5	1
. Nitrate-Nitrite as N)	$ \times$		0.86	1.3						1	mg/L	lb/dy	0.81	1.2	1

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

Note: This outfall is typically routed to the Recycle Pond.

ITEM V-B CONT			-											tfall C01
1. POLLUTANT		RK "X"			b. MAXIMUM 30	EFFLUENT	c. LONG TERM A	VRG VALUE	1	4. UNI		5. IN a. LONG 1	TAKE (option	al)
AND	a.	b.	a. MAXIMUM D/	AILY VALUE	(if availa		(if availa		1.00.05	0.0110511		AVERAGE		
CAS NO. (if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g, Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		1.6	2.4					1	mg/L	lb/dy	1.1	1.7	1
h. Oil and Grease	\times		<5	<8					1	mg/L	lb/dy	<5	< 8	1
i. Phosphorus (as P), Total (7723-14-0)	\times		<0.10	<0.2						mg/L	lb/dy	<0.10	<0.2	1
j. Radioactivity										•				
(1) Alpha, Total									0					0
(2) Beta, Total									0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (as SO ₄) (14808-79-8)	\times		58	88					1	mg/L	lb/dy	55	84	1
I. Sulfide (as S)		\times	<2.0	<3					1	mg/L	lb/dy	<2.0	<3	1
m, Sulfite (as SO3) (14265-45-3)		\times	<2.0	<3					1	mg/L	lb/dy	<2.0	<3	1
n. Surfactants		\times	2.0	3					1	mg/L	lb/dy	0.19	0.3	1
o. Aluminum, Total (7429-90-5)	\times		0.11	0.2					1	mg/L	lb/dy	<0.050	<0.1	1
p. Barium, Total (7440-39-3)	\times		0.06	<0.1					1	mg/L	lb/dy	0.06	<0.1	1
q. Boron, Total (7440-42-8)	X		0.36	0.5					1	mg/L	lb/dy	0.35	0.5	1
r. Cobalt, Total (7440-48-4)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1
s. Iron, Total (7439-89-6)	X		0.15	0.2					1	mg/L	lb/dy	0.08	0.1	1
t. Magnesium, Total (7439-95-4)	\times		14	21					1	mg/L	lb/dy	14	21	1
u. Molybdenum, Fotal 7439-98-7)		\times	<0.010	<0.1					1	mg/L	lb/dy	<0.010	<0.1	1
/. Manganese, Fotal 7439-96-5)	\times		0.030	<0.1					1	mg/L	lb/dy	0.024	<0.1	1
v. Tin, Total 7440-31-5)		\times	<0.060	<0.1		•			1	mg/L	lb/dy	<0.060	<0.1	1
t. Titanium, Total 7440-32-6)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1

				E	PA I.D. NUN	ABER (copy from Ite	m 1 of Form 1) OUTFALL NUM	IBER						
CONTINUED FRO	M PAGE 3 C	F FORM 2-	-C			IL0000108		Co)1						
PART C - If you a fraction fraction provide dischar pollutar briefly	are a primary as that apply as), mark "X" the results ged in conc ats which yo	y industry a to your inc in column of at least c entrations o u know or h reasons th	nd this out lustry and 2-b for eac one analysi f 10 ppb or nave reason ne pollutant	for ALL toxic meta ch pollutant you kn s for that pollutant. greater, If you ma n to believe that yo	ls, cyanides, ow or have If you mark rk column 2l ou discharge	er, refer to Table 2c, and total phenols, reason to believe is column 2b for any o for acrolein, acryl in concentrations c , Note that there a	If you are n s present. Ma pollutant, you onitrile, 2,4 di of 100 ppb or	ot required to mark ark "X" in column 2 u must provide the initrophenol, or 2-m greater. Otherwise	c column 2 -c for each results of a nethyl-4, 6 c e, for polluta	-a (<i>secondary</i> pollutant you t least one an dinitrophenol, ants for which	<i>r industries, not</i> believe is abs alysis for that p you must provi you mark colu	nprocess wa ent. If you m pollutant if yo de the result imn 2b, you i	stewater outfalls, a park column 2a for ou know or have rea s of at least one ar must either submit	and nonrequ any pollutar ason to belia nalysis for ea at least one	ired GC/MS nt, you must eve it will be ach of these analysis or
		2. MARK "X	»				FFLUENT				4. UN	IITS		AKE (optiond	il)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (if ave					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANID	E, AND TOT	AL PHENC	LS					······				h			·
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<0.03					1	ug/L	lb/dy	<20	<0.03	1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20	<0.03					1	ug/L	lb/dy	<20	<0.03	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
4M. Cadmium, Total (7440-43-9)	\times		\times	<2	<0.01					1	ug/L	lb/dy	<2	<0.01	1
5M. Chromium, Total (7440-47-3)	\times		X	<4	<0.01					1	ug/L	lb/dy	<4	<0.01	1
6M. Copper, Total (7440-50-8)	\times		X	16	0.02					1	ug/L	lb/dy	13	0.02	1
7M. Lead, Total (7439-92-1)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
8M. Mercury, Total (7439-97-6)	\times		\times	2.0	<0.01					1	ng/L	lb/dy	<1	<0.01	1
9M. Nickel, Total (7440-02-0)	X		X	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
10M. Selenium, Total (7782-49-2)	X		X	12	0.02					1	ug/L	lb/dy	12	0.02	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
12M. Thallium, Total (7440-28-0)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
13M. Zinc, Total (7440-66-6)	\times	\times		10	0.01					1	ug/L	lb/dy	<10	<0.01	1
14M. Cyanide, Total (57-12-5)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
15M. Phenols, Total	\times		\times	<10	<0.01					1	ug/L	lb/dy	<5	<0.01	1
DIOXIN								····-							
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times				10 00 000 p.p. 1.p.		<u></u>						
TDA Form 2510 20	(0.00)						DACE								

.

CONTINUED FRO		2. MARK "X	"			3. E	FFLUENT				4. UN	ITS	5. INT	AKE (optiona	fall C01
1. POLLUTANT AND	a,	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availat		c. LONG TERM VALUE (if av					a. LONG 1 AVERAGE	ERM	<u> </u>
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I VOLATIL	E COMPO	UNDS		1			<u></u>	4 - i - i		·	1.,,,		1. (-2	.L.,
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5						1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V, Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	<5						1 .	ug/L		< 5		1
11V. Chloroform 67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane 75-27-4)	\times°		\times	<5						1	ug/L		<5		1
13V. Dichloro- lifluoromethane 75-71-8)				Note 1									Note 1		
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- ethane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- thylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V, 1,2-Dichloro- ropane (78-87-5)	\times		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6) * *	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	\times		\times	<5						1	ug/L		<5		1
0V. Methyl romide (74-83-9)	X		X	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	\mathbf{X}^{\dagger}		\mathbf{X}^{\dagger}	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO		- 2. MARK "X	19	T		3 F	FFLUENT				4. UN		5 INT	AKE (optiond	all C01
1. POLLUTANT AND	a.	b.	с.	a, MAXIMUM DA	LY VALUE	b. MAXIMUM 30 (if availab	DAY VALUE	c. LONG TERM VALUE (if ave			4. 010		a. LONG T AVERAGE \	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	ľ	- b. NO. OF ANALYSE
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)											
22V. Methylene Chloride (75-09-2)	\times		\times	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5	10/10/17					1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		\times	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	\times		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	– ACID CO	MPOUNDS													
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- phenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A, 2,4-Dimethyl- ohenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
5A. 2,4-Dinitro- ohenol (51-28-5)	\times		X	<50						1.	ug/L		<50		1
6A, 2-Nitrophenol 88-75-5)	X		\times	<10						1	ug/L		<10		1
7A, 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
A. P-Chloro-M- Cresol (59-50-7)	X		X	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	X		X	<50						1	ug/L		< 50		1
0A. Phenol 108-95-2)	X		X	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	$\times \mid$		X	<50						1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

CONTINUED FRO		2. MARK "X	n			3, E	FFLUENT				4. UN	ITS	5, INTA	KE (option	$\frac{1}{all C01}$
1. POLLUTANT AND	а,	Þ.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 ((if availal		VALUE (if ave			- 001051		a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO, OF
GC/MS FRACTION	I - BASE/NE	EUTRAL CO	DMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	\times		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	\times		\times	<80						1	ug/L		<80		1
5B. Benzo (a) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (a) Pyrene (50-32-8)	\times		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
BB. Benzo (<i>ghi</i>) Perylene (191-24-2)	\times		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		<10		1
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		X	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- ethyl) Ether 111-44-4)	\times		\times	<10						1	ug/L	х. 	<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
3B. Bis (<i>2-Ethyl-</i> hexyl) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
4B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl hthalate (85-68-7)	X		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- aphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	\times		\times	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) Inthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	\times		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	XT		$X \top$	<10						1	ug/L		<10		1

CONTINUED FRO									سروى بالمتاحين والم		·····				all C01
		2. MARK "X					FFLUENT	· · · · · · · · · · · · · · · · · · ·			4. UN	ITS		KE (optiona	1)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 E (if availab		c. LONG TERM VALUE (<i>if av</i>			a. CONCEN-		a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED		ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	N - BASE/N	EUTRAL C	OMPOUND	S (continued)		······································			·			·			
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		\times	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	X		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		\times	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10			-			1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	X		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	Х		X	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	X		X	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (<i>as Azo-</i> <i>benzene</i>) (122-66-7)	\times		Х	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	X		X	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	X		X	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B, Isophorone (78-59-1)	\times		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	\times		\times	<10			· · · · · · · · · · · · · · · · · · ·			1	ug/L		<10		1
40B, Nitrobenzene (98-95-3)	\times		\times	<10						1	ug/L		<10		1
41B. N-Nitro- sodimethylamine (62-75-9)	\times		\times	<10						1	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine (621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUED FRO				T				·····					T		fall CO1
1. POLLUTANT		2. MARK "X I				3. E b. MAXIMUM 30		c. LONG TERM	AVEC		4. UN			KE (option	<i>al</i>)
AND	a.	b. BELIEVED	с.	a. MAXIMUM DA		(if availa	ble)	VALUE (if ave	ailable)		- 001051		a. LONG T AVERAGE \	/ALUE	
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	- b. NO. O ANALYSE
GC/MS FRACTION	- BASE/NE	EUTRAL CO	MPOUND	S (continued)	r <u></u>	.			· •						_
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	\times		\times	<10						1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10						1	ug/L		<10		1
GC/MS FRACTION	I – PESTICI	DES													
1P. Aldrin (309-00-2)			\times												
2P. α-BHC (319-84-6)			\times												
3P. β-BHC (319-85-7)			\times												
4Ρ. γ-ΒΗC (58-89-9)			\times												
5Ρ. δ-ΒΗϹ (319-86-8)			\times												
6P. Chlordane (57-74-9)			\times												
7P. 4,4'-DDT (50-29-3)			\times											ā	
3P. 4,4'-DDE 72-55-9)			\times												
9P. 4,4'-DDD 72-54-8)			\times												
10P. Dieldrin 60-57-1)			\times												
1P. α-Enosulfan 115-29-7)			\times												
2P. β-Endosulfan 115-29-7)			\mathbf{X}												
3P. Endosulfan Sulfate (1031-07-8)			\times												
4P. Endrin 72-20-8)			\times												
5P. Endrin Idehyde 7421-93-4)			\times												
6P. Heptachlor 76-44-8)			$\times \mid$												

				EPA	I.D. NUMBE	R (copy from Item 1	of Form 1)	OUTFALL NUM	BER						
CONTINUED FRO	M PAGE V-I	8			I	L0000108		co	01	Ì					
	2	2. MARK "X"	v			3. E	FFLUENT				4. UN	ITS	5. INT/	AKE (optiona	<i>ıl</i>)
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERN VALUE (<i>if ave</i>			a. CONCEN-		a. LONG T AVERAGE \		b. NO. OF
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION	I – PESTICI	DES (contini	ued)												
17P. Heptachlor Epoxide (1024-57-3)			X												
18P. PCB-1242 (53469-21-9)			\times	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

.

EPA Form 3510-2C (8-90)

PAGE V-9

Please print or type in the unshaded	l areas only.		(copy from Item 1 of F L0000108	0111 1)		oved. OMB No. 2040-0 pires 5-31-92.	
FORM 2E NPDES SEPA F	acilities	Which D	o Not Dis	charg	e Process	s Wastew	ater
RECEIVING WATERS							
For th	is outfall, list	t the latitude ar	nd longitude, an	d name o	of the receiving	water(s).	
Outfall Latitu	ıde	Longitude	Receiving Water	(name)			
Deg Mir	n Sec De	eg Min Sec	Coffeen I	Lake (v	ia Outfalls	001/020/02	1/022)
D01 39 03	3 34 8	9 23 28					
I. DISCHARGE DATE (If a new	discharger, the existing		begin discharging	1)			
II.TYPE OF WASTE							
A. Check the box(es) indicating t	the general type	e(s) of wastes disc	harged.				
Sanitary Wastes	Restaurant or (Cafeteria Wastes	🗆 Nor	ncontact Co	oling Water	Other Nonpro Wastewater ()	
IV. EFFLUENT CHARACTERIS A. Existing Sources — Prov	vide measurem	ents for the param	eters listed in the le	∋ft-hand co	lumn below, unless	s waived by the per	mitting
 A. Existing Sources — Provauthority (see instructions B. New Dischargers — Provauthority. Instead of the n 	vide measurem). vide estimates t	for the parameters urements taken, p (1) Maximum	listed in the left-ha	nd column f estimated (2) Average	below, unless waiv values <i>(see instruc</i> Daily	red by the permittin ctions).	
 A. Existing Sources — Provauthority (see instructions B. New Dischargers — Prov 	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value (include units)	listed in the left-ha rovide the source o	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instrue Daily if year) units)	red by the permittin ctions).	g / <u>or) (4)</u> Source of Estin
 A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or 	vide measurem s). vide estimates t umber of meas	for the parameters urements taken, p (1) Maximum Daily Value <i>include units</i>) Concentra	listed in the left-ha rovide the source o ation Ma	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration	(3) (3) (3) Number of Measurements Taken (last year)	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD)	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value <i>include units</i>) Concentra 11 mg	listed in the left-ha rovide the source o ation Ma /L	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS)	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value include units) Concentra 11 mg 4.4 mg	Iisted in the left-ha rovide the source o ation Ma /L g/L	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration	(3) (3) Number of Measurements Taken (last year) 1, 24 1, 24	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged)	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value <i>include units</i>) Concentra 11 mg	Iisted in the left-ha rovide the source o ation Ma /L g/L	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (<i>if believed present</i>	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value include units) Concentra 11 mg 4.4 mg	Iisted in the left-ha rovide the source o ation Ma /L g/L	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) Number of Measurements Taken (last year) 1, 24 1, 24	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value include units) Concentra 11 mg 4.4 mg	listed in the left-ha rovide the source o ation Mai /L g/L **	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) Number of Measurements Taken (last year) 1,24 1,24 1,24	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if chlorine is used)	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value include units) Concentra 11 mg 4.4 mg 48,100	listed in the left-ha rovide the source o ation Mai /L g/L **	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) Number of Measurements Taken (last year) 1,24 1,24 1,24 0	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if chlorine is used) Oil and Grease	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value (include units) Concentra 11 mg 4.4 mg 48,100	listed in the left-ha rovide the source o ation Mai /L g/L **	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) (3) (1) Number of Measurements Taken (1) 1,24 1 1,24 1 1 0 1 1	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (COD)	vide measurem). vide estimates t umber of meas (for the parameters urements taken, p (1) Maximum Daily Value (include units) Concentra 11 mg 4.4 mg 48,100 <5.0 m 23 mg	listed in the left-ha rovide the source o ation Mai /L g/L ** ig/L g/L g/L	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L	(3) (3) Number of Measurements Taken (last year) 1,24 1,24 1,24 1 1 0 1 1	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (COD) *Total organic carbon (TOC)	vide measurem). vide estimates i umber of meas (Mass	for the parameters urements taken, p (1) Maximum Daily Value (include units) Concentra 11 mg 4.4 mg 48,100 <5.0 m 23 mg 6.8 m	listed in the left-ha rovide the source o ation Mai /L g/L ** ig/L g/L g/L	nd column f estimated (2) Average Value (<i>ias</i> (<i>include</i>	below, unless waiv values (see instruct Daily if year) units) Concentration <5 mg/L 7.6 mg/L	(3) (3) (3) (1) Number of Measurements Taken (1) 1,24 1 1,24 1 1,24 1 1 0 1 1 1 1 1 1 1 1	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (COD) *Total organic carbon (TOC) Ammonia (as N)	vide measurem vide estimates t umber of meas Mass Value Value 0 Value	for the parameters urements taken, p (1) Maximum Daily Value (include units) Concentra 11 mg 4.4 mg 48,100 <5.0 m 23 mg 6.8 m 14 mg	listed in the left-ha rovide the source o ation Mai /L g/L ** ig/L g/L g/L	Ind column f estimated (2) Average Value (las (include ss	below, unless waiv values (see instruc- paily styear) units) Concentration <5 mg/L 7.6 mg/L 7.6 mg/L	(3) (3) (3) (1) Number of Measurements Taken (last year) 1,24 1 1,24 1 1,24 1 1 0 1 1 1 1 1 1	g / <u>or) (4)</u> Source of Estin
A. Existing Sources — Pro- authority (see instructions B. New Dischargers — Pro- authority. Instead of the n Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed present or if sanitary waste is discharged) Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (COD) *Total organic carbon (TOC) Ammonia (as N) Discharge Flow	vide measurem vide estimates t umber of meas Mass Value Value 0 Value	for the parameters urements taken, p (1) Maximum Daily Value (include units) Concentra 11 mg 4.4 mg 48,100 <5.0 m 23 mg 6.8 m 14 mg .00675 MGD	listed in the left-ha rovide the source o ation Mai /L g/L ** ig/L g/L g/L	nd column f estimated (2) Average Value (las (include ss	below, unless waiv values (see instruc- paily styear) units) Concentration <5 mg/L 7.6 mg/L 7.6 mg/L	(3) (3) (3) (1) Number of Measurements Taken (1) 1,24 1,24 1,24 1 1,24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1,24 1 1 1 1 1 1 1 1,24 1,24	g

** Units = CFUs/100mL

V. Except for leaks or spills, will the discharge described in this form be intermittent or seasonal?	No
s in feet, bitch y decarbe the nequency of new and darkness.	
Effluent flow is dependent upon cyclic influent flow from sanitary lift station pur	nps.
VI. TREATMENT SYSTEM (Describe briefly any treatment system(s) used or to be used)	
Sanitary package sewage treatment plant is composed of a Spirahoff holding tank, t	ricking filter
and sand filter.	ricer,
VII. OTHER INFORMATION (Optional)	
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other infor	mation you feel
should be considered in establishing permit limitations. Attach additional sheets, if necessary.	
VIII. CERTIFICATION	
I certify under penalty of law that this document and all attachments were prepared under my direction or supervision system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my	
persons who manage the system, or those persons directly responsible for gathering the information, the information su	bmitted is to the best of
my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting fall, the possibility of fine and imprisonment for knowing violations.	se information, including
A. Name & Official Title	B. Phone No. (area code
	& no.)
Michael L. Menne, Vice President - Environmental Services	314-554-2816
C. Signature	D. Date Signed
Micha L. Merry	07-25-12
pulle of them	
EPA Form 3510-2E (8-90)	Page 2 of

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPAI.D. NUMBER (copy from Item 1 of Form 1) IL0000108

<u> </u>						A New York, A 197 - Performance				•			
EFFLUE	ENT CHARAC	CTERISTICS (contin	nued from page	3 of Form 2-C)			123					DUTFALL NO).
iust provi	ide the results	s of at least one and	alysis for every p	pollutant in this tabl	le. Complete o	ne table for each	outfall. See ins	tructions for add	litional details.	and an			
_		JM DAILY VALUE	(if a		c. LOI	NG TERM AVRG (if available)	. VALUE	d NO OF	a CONCEN-		AVERAGE		b. NO. OF
NT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRATI	ION (2) MASS	(1) CONCI	ENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSE
)xygen	<1	<0.1						1	mg/L	lb/dy	4.4	0.6	1
gen	26	3.2						1	mg/L	lb/dy	14	1.8	1
Carbon	7.0	0 0.9						1	mg/L	lb/dy	6.2	0.8	1
led	11	1.4						1	mg/L	lb/dy	12	1.5	1
0	<1.	0 <0.1						1	mg/L	lb/dy	<0.10	<0.1	1
Ň	VALUE 0	0.015	VALUE 0.	.510	VALUE	0.051		1,31,366	MGD		VALUE		
ľ	VALUE	16	VALUE		VALUE			1	°C		VALUE		
	VALUE		VALUE		VALUE			0	°C		VALUE		
I	MINIMUM 7.01	MAXIMUM 7.20	MINIMUM	MAXIMUM				1	STANDARD	UNITS			
ly, or inc	directly but ex	xpressly, in an efflu	ent limitations	guideline, you mus	st provide the	results of at lea	st one analysis	for that polluta	nt. For other poll	utants for w			
				3.	EFFLUENT						5. IN	TAKE (option	al)
а	b	a, MAXIMUM DA	ALLY VALUE										
	BELIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATIO	NN (2) MASS				(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
	X	<1.0	<0.1					1	mg/L	lb/dy	1	<0.1	1
	\times							0	mg/L	lb/dy	<0.05		1
	$ \times $							0					0
\times								0	CFU/0.1L		3		1
$\mathbf{\mathbf{\nabla}}$		0.31	<0.1					1	mg/L	lb/dy	0.31	<0.1	1
\sim										-	+		
	NT xygen gen Carbon ed () "X" in cc ly, or ind itative da 2. M a.	ust provide the result a. MAXIMU NT CONCENTRA ixygen <1	ust provide the results of at least one and a. MAXIMUM DAILY VALUE (1) (2) MASS (2) MASS (2	ust provide the results of at least one analysis for every p a. MAXIMUM DAILY VALUE b. MAXIMUM (1) CONCENTRATION (2) MASS CONCENTRAT (1) CONCENTRATION (2) MASS CONCENTRAT (1) CONCENTRATION (2) MASS CONCENTRAT (1) (2) MASS CONCENTRAT (1) (2) MASS CONCENTRAT (2) MALUE 0.01 VALUE 0.015 VALUE VALUE 0.015 VALUE VALUE 16 VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE 0.015 VALUE (1) (2) MARK "X" a. MAXIMUM DAILY VALUE (2) MARK "X" (2) MARK "X" (2) MARK "X (3) CONCENTRATION (2) MASS (4) CONCENTRATION (2) CONCENTRATION (2) MASS (4) CONCENTRATION (2) CONC	Image: NT 2. EFFLU a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE (f) available) (1) CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS (2) CONCENTRATION (2) MASS (2) CONCENTRATION (2) MASS (2) (2) (2) (2) (2) (2) (3) (2) (2) (3) (2) (2) (3) (2) (2) (3) (2) (2) (4) (1) (2) (5) (1) (2) (4) (1) (1) (5) (1) (2) (5) (1) (2) (7) (1) (2) (7) (1) (2) (7) (1) (2) (7) (1) (2) (7) (2) (1) (7) (2) (2) (7) (2) (2)	ust provide the results of at least one analysis for every pollutant in this table. Complete o 2. EFFLUENT a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LOI (1) concentration (2) MASS concentration (2) MASS (1) concentration xygen <1	Ust provide the results of at least one analysis for every pollutant in this table. Complete one table for each 2. EFFLUENT a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG (if available) (if availabl	Value Ust provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfail. See his 2. EFFLUENT a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG, VALUE a. MAXIMUM DAILY VALUE b. MAXIMUM 30 DAY VALUE c. LONG TERM AVRG, VALUE (f) available) (f) available (f) available NT CONCENTRATION (2) MASS (1) CONCENTRATION (2) MASS gen 2.6 3.2	Use provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions for add Image: Complete one table for each outfall. See instructions f	Use provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. See instructions for additional details. Image: Complete one table for each outfall. Image: Complete one table for each outfall. Image: Complete one t	Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value Value	EFFLUENT CHARACTERISTICS (continued from page 3 of Form 2-C) automatical set one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. automatical set one analysis for every pollutant in this table. Complete one table for each outfall. automatical set one analysis for every pollutant you pollutant you for each pollutant you pollutant you favore frame average. automatical set on explanational details. automatical set on each pollutant you for each pollutant you for each polutant you for each pollutant you for each pollutant y	IDI Lag provide the results of al least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. LEFLUENT Concentrations for additional details. A MAXIMUM DAILY VALUE LEFLUENT Concentrations for additional details. NT Concentrations for additional details. A MAXIMUM DAILY VALUE Long TERM AVRC VALUE Concentrations for additional details. NT Concentration (p) MASS (1) Concentration (p) MASS ANALYSES ACONCENT NY On (c) 1 mg/L 10/dy 4.4.4.4 0.6.2.2 0.8.6 Concentration (p) MASS (c)

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

Note: This outfall is typically routed to the Recycle Pond.

Outfall C01 data provided for this outfall, per IEPA authorization.

ITEM V-B CONT	TINUED FR	OM FRONT											Ou	tfall E01
	2. MA	RK "X"				EFFLUENT				4. UNI	TS	5. INT	AKE (option	al)
1. POLLUTANT AND CAS NO.	a.	b.	a. MAXIMUM D	AILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A (if availa		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \	/ALUE	1 110 05
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		1.6	0.2					1	mg/L	lb/dy	1.1	0.1	1
h. Oil and Grease	\times		<5	<0.6					1	mg/L	lb/dy	<5	<0.6	1
i. Phosphorus (as P), Total (7723-14-0)	\times		<0.10	<0.1					1.	mg/L	lb/dy	<0.10	<0.1	1
j, Radioactivity						•								
(1) Alpha, Total									0					0
(2) Beta, Total						·····			0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (as SO ₄) (14808-79-8)	\times		58	7.3					1	mg/L	lb/dy	55	6.9	1
1. Sulfide (as S)		\times	<2.0	<q.2< td=""><td></td><td></td><td></td><td></td><td>1</td><td>mg/L</td><td>lb/dy</td><td><2.0</td><td><0.2</td><td>1</td></q.2<>					1	mg/L	lb/dy	<2.0	<0.2	1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0	<0.2					1	mg/L	lb/dy	<2.0	<0.2	1
n. Surfactants		\times	2.0	0.2					1	mg/L	lb/dy	0.19	<0.1	1
o. Aluminum, Total (7429-90-5)	\times		0.11	<0.1					1	mg/L	lb/dy	<0.050	<0.1	1
p. Barium, Total (7440-39-3)	\times		0.06	<0.1					1	mg/L	lb/dy	0.06	<0.1	1
q. Boron, Total (7440-42-8)	\times		0.36	<0.1					1	mg/L	lb/dy	0.35	<0.1	1
r. Cobalt, Total (7440-48-4)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1
s. Iron, Total (7439-89-6)	\times		0.15	<0.1					1	mg/L	lb/dy	0.08	<0.1	1
t. Magnesium, Total (7439-95-4)	\times		14	1.8					1	mg/L	lb/dy	14	1.8	1
u. Molybdenum, Total (7439-98-7)		X	<0.010	<0.1					1	mg/L	lb/dy	<0.010	<0.1	1
v. Manganese, Total (7439-96-5)	\times		0.030	<0.1					1	mg/L	lb/dy	0.024	<0.1	1
w. Tin, Total (7440-31-5)		\times	<0.060	<0.1					1	mg/L	lb/dy	<0.060	<0.1	1
x. Titanium, Total (7440-32-6)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1

				Ē	PA I.D. NUM	MBER (copy from Iter	n 1 of Form 1) OUTFALL NUN	IBER						
CONTINUED FROM	M PAGE 3 C	OF FORM 2	-C	1		IL0000108		EC)1						
fraction fraction provide dischar pollutar briefly	is that apply is), mark "X' the results ged in conc nts which vo	to your inc in column of at least c entrations o u know or h reasons th	lustry and 2-b for ea one analysi of 10 ppb o nave reaso ne pollutan	for ALL toxic meta ch pollutant you kn is for that pollutant, r greater, If you ma on to believe that yo	Is, cyanides, ow or have If you mark rk column 21 ou discharge	er, refer to Table 2c, and total phenols, reason to believe is column 2b for any o for acrolein, acryld in concentrations c . Note that there an	If you are n present. Ma pollutant, you politrile, 2,4 di of 100 ppb or	ot required to marl ark "X" in column 2 a must provide the initrophenol, or 2-m greater. Otherwise	k column 2- -c for each results of a nethyl-4, 6 c e. for polluta	a (secondary pollutant you t least one an linitrophenol, ants for which	industries, nor believe is abs alysis for that p you must provi you mark colu	nprocess wa ent. If you m pollutant if yo de the result mn 2b, you	stewater outfalls, a bark column 2a for bu know or have rea s of at least one ar must either submit	and nonrequi any pollutar ason to beli alysis for er at least one	<i>iired GC/MS</i> nt, you must eve it will be ach of these analysis or
		2. MARK "X	n				FFLUENT				4. UN	ITS	5. INT/	AKE (optiona	ıl)
1. POLLUTANT AND	a,	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (<i>if availa</i> l		c. LONG TERM VALUE (if ave					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANID	E, AND TOT	AL PHENC	LS			·		· · · · · · · · · · · · · · · · · · ·			_				
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<0.01					1	ug/L	lb/dy	<20	<0.01	1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20	<0.01					1	ug/L	lb/dy	<20	<0.01	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
4M. Cadmium, Total (7440-43-9)	\times		\times	<2	<0.01					1	ug/L	lb/dy	<2	<0.01	1
5M. Chromium, Total (7440-47-3)	\times		\times	< 4	<0.01					1	ug/L	lb/dy	<4	<0.01	1
6M. Copper, Total (7440-50-8)	\times		\times	16	<0.01					1	ug/L	lb/dy	13	<0.01	1
7M. Lead, Total (7439-92-1)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
8M. Mercury, Total (7439-97-6)	\times		\times	2.0	<0.01					1	ng/L	lb/dy	<1	<0.01	1
9M. Nickel, Total (7440-02-0)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
10M. Selenium, Total (7782-49-2)	\times		\times	12	<0.01					1	ug/L	lb/dy	12	<0.01	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
12M. Thallium, Total (7440-28-0)	\times		\times	<10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
13M. Zinc, Total (7440-66-6)	\times	\times		10	<0.01					1	ug/L	lb/dy	<10	<0.01	1
14M. Cyanide, Total (57-12-5)	\times		\times	<5	<0.01					1	ug/L	lb/dy	<5	<0.01	1
15M. Phenols, Total	$\times \mid$		\times	<10	<0.01					1	ug/L	lb/dy	<5	<0.01	1
DIOXIN															
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	LTS							A			
-DA Earm 2540 90	(0.00)						PAGE	1/2					0.011		

CONTINUE ON REVERSE

CONTINUED FRO		2. MARK "X	"			3. E	FFLUENT				4. UN	ITS	5, INTA	AKE (option	fall E01
1. POLLUTANT AND	a.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availat		c. LONG TERM VALUE (<i>if ave</i>					a. LONG T AVERAGE V	ERM	1
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS							<u> </u>		I		1	
1V. Accrolein (107-02-8)	\times		\times	<50						1	µg∕L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5				-		1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5 .		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	< 5						1	ug/L		<5		1
11V. Chloroform (67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane 75-27-4)	\times		\times	<5						· 1	ug/L		<5		1
I3V. Dichloro- lifluoromethane 75-71-8)				Note 1									Note 1		
4V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- thane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- thylene (75-35-4)	\times		$\times \mid$	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	\times		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6) * *	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	\times		\times	<5						1	ug/L		<5		1
0V. Methyl romide (74-83-9)	X		X	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	XT		X	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

	2	2. MARK "X	n			3. E	FFLUENT				4. UN	ITS	5. INTA	AKE (option	al)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERN VALUE (if ava	ailable)				a. LONG T AVERAGE V	ERM	Í
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT		(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)											
22V. Methylene Chloride (75-09-2)	\times		$ \times$	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5			. <u></u>			1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		\times	<5						1.	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L	-	<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- elhylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1							-		Note 1		
31V. Vinyl Chloride (75-01-4)	\times		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	– ACID COI	MPOUNDS													
1A. 2-Chiorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- phenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A. 2,4-Dimethyl- phenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50	. <u> </u>	1
5A. 2,4-Dinitro- ohenol (51-28-5)	\times		\times	<50						1.	ug/L		<50		1
6A. 2-Nitrophenol (88-75-5)	\times		\times	<10						1	ug/L		<10		1
7A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
BA. P-Chloro-M- Cresol (59-50-7)	\times		\times	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	\times		\times	<50						1	ug/L		<50		1
0A. Phenol 108-95-2)	\times		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		XT	<50						1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

.

Note 1 - This parameter deleted per 40CFR122, Appendix D.

CONTINUED FRO		MARK "X	n			3. E	FFLUENT			······	4. UN	ITS	5. INT/	AKE (option	a/)
1. POLLUTANT AND	a.	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 [(if availal		c. LONG TERM VALUE (if ave			- 001051		a. LONG T AVERAGE V	/ALUE	Í
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF	a, CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	– BASE/NE	UTRAL CO	OMPOUND	S											
1B. Acenaphthene (83-32-9)	\times		\times	<10						1	ug/L		<10		1
2B, Acenaphtylene (208-96-8)	\times		X	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	\times		\times	<80						1	ug/L		<80		1
5B. Benzo (a) Anthracene (56-55-3)	\times		\times	<10						1	ug/L		<10		1
6B. Benzo (<i>a</i>) Pyrene (50-32-8)	\times		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
3B. Benzo (ghi) Perylene (191-24-2)	X		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene 207-08-9)	\times		\times	<10						. 1	ug/L		<10		1
10B. Bis (2-Chloro- ethoxy) Methane 111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- ethyl) Ether 111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropy/) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
3B. Bis (<i>2-Ethyl-</i> exyl) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
4B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl Phthalate (85-68-7)	\times		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- aphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	\times		\times	<10						1	ug/L		<10		1
9B. Dibenzo (a,h) nthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	\times		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		X	<10						1	ug/L		<10		1

CONTINUED FRO											1		T		all E01
1. POLLUTANT		2. MARK "X T				3. E b. MAXIMUM 30	FFLUENT	C. LONG TERM		T	4. UN	IITS T		AKE (optiond	ıl)
AND	a,	b.	c.	a. MAXIMUM DA	LY VALUE	(if availa		VALUE (if av					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION		b. NO. OF
GC/MS FRACTION	I – BASE/N	EUTRAL C	OMPOUND	DS (continued)									·		
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1.
23B, 3,3-Dichloro- benzidine (91-94-1)	\times		$ \times$	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		X	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		\times	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		X	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\times		Х	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (<i>as Azo-</i> <i>benzene</i>) (122-66-7)	\times		\times	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	\times		\times	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	\times		\times	<10						1	ug/L		<10		1
35B, Hexachloro- cyclopentadiene (77-47-4)	\times		\times	< 50						1	ug/L		<50	-	1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone (78-59-1)	X		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	\times		X	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	\times		X	<10						1	ug/L		<10		1
41B. N-Nitro- sodimethylamine (62-75-9)	\times		\times	<10						1	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine (621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUED FRO															fall E01
1. POLLUTANT	<u> </u>	2. MARK "X	1				FFLUENT				4. UN	ITS		AKE (option	<i>al</i>)
AND	a.	b.	C.	a. MAXIMUM DA		b. MAXIMUM 30 (if availa	ble)	VALUE (if av					a. LONG T AVERAGE		
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT		CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS		a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO, OF
GC/MS FRACTION	I – BASE/N	UTRAL CO	OMPOUND	S (continued)										**************************************	- -
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	X		\times	<10						1	ug/L		<10		1
45B. Pyrene (129-00-0)	X		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10						1	ug/L		<10		1
GC/MS FRACTION	I – PESTICI	DES													
1P. Aldrin (309-00-2)			\times												
2P. α-BHC (319-84-6)			\times												
3P. β-BHC (319-85-7)			\times												
4P. γ-BHC (58-89-9)			\times												
5Ρ. δ-ΒΗC (319-86-8)			\times												
6P. Chlordane (57-74-9)			X												
7P. 4,4'-DDT 50-29-3)			X												
3P. 4,4'-DDE 72-55-9)			X												
9P. 4,4'-DDD 72-54-8) 10P. Dieldrin			X												
60-57-1) 1P. α-Enosulfan			X												
115-29-7) 2P. β-Endosulfan			X												
3P, Endosulfan			\mathbf{X}												
Sulfate (1031-07-8)			\times												
4P. Endrin 72-20-8)			\times												
5P, Endrin Idehyde 7421-93-4)			\times												
6P. Heptachlor 76-44-8)			\times												

				ſ	EPA		R (copy from Item]	of Form 1)	OUTFALL NUM	BER						
CONTINUED FRO	M PAGE V-I	3				II	L0000108		EC)1						
[2	2. MARK "X"	, ,				3.	EFFLUENT				4. UN	IITS	5. INT/	AKE (optiond	ıl)
1. POLLUTANT AND CAS NUMBER	a,	b.	C.			ILY VALUE	b. MAXIMUM 30 (if availe		c. LONG TERN VALUE (<i>if ave</i>			- 001051		a. LONG T AVERAGE \		
(if available)	REQUIRED	BELIEVED PRESENT			1) ITRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I - PESTICI	DES (continu	ued)										•	•	L	.1
17P. Heptachlor Epoxide (1024-57-3)			X													
18P. PCB-1242 (53469-21-9)			\times	< 0).5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1	0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1	0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	< 0	.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	< 0	.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1	.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	< 0	.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times													

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPAI.D. NUMBER (copy from Item 1 of Form 1) IL0000108

V. INTAKE AN	D EFFLU	ENT CHARA	CTERISTICS (cont	nued from page 3	s of Form 2-C)								DUTFALL NO).
PART A -You	must prov	ide the result	s of at least one an	alysis for every po	ollutant in this tab	le. Complete o	ne table for eac	h outfall. See ins	tructions for add	ditional details.			<u></u>	
					2. EFFLU	IENT				3. UNI (specify if			. INTAKE (optional)	
			JM DAILY VALUE	(if av	30 DAY VALUE ailable)	c. LOI	NG TERM AVR (if available)		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \	ERM	
1. POLLUT	ANT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRATIC	ON (2) MASS	(1) CONCE	ENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Biochemical Demand (<i>BOD</i>)		<4							1	mg/L	lb/dy	4.4		1
b. Chemical Ox Demand (<i>COD</i>)		44						_	1	mg/L	lb/dy	14		1
c. Total Organie (<i>TOC</i>)	c Carbon	18							1	mg/L	lb/dy	6.2		1
d. Total Susper Solids (<i>TSS</i>)	nded	<4		6			1		1,2,24	mg/L	lb/dy	12		1
e. Ammonia (<i>as</i>	N)	<1							1	mg/L	lb/dy	<0.10		1
f. Flow		VALUE	0	VALUE		VALUE			1	MGD		VALUE		
g. Temperature (winter)		VALUE	15	VALUE		VALUE			1	°C		VALUE		
h. Temperature (summer)		VALUE	<u> </u>	VALUE		VALUE			0	°C		VALUE		
i. pH		MINIMUM 7.21	MAXIMUM 8.05	MINIMUM	MAXIMUM				1	STANDARD	UNITS			
dire	ctly, or in	directly but e		uent limitations g	uideline, you mu	st provide the	results of at lea	ast one analysis	for that polluta	nt. For other pol	lutants for w	umn 2a for any pollu vhich you mark colu		
<u>quu</u>	·····	IARK "X"				EFFLUENT				4. UN		5. INT	AKE (optiona	1)
1. POLLUTANT AND	a.	b.	a. MAXIMUM D		b. MAXIMUM 30 (if availa			M AVRG. VALU				a. LONG TERM VALUE		
CAS NO. (if available)	BELIEVE PRESEN		(1) CONCENTRATION	(2) MASS C	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATI	ON (2) MASS	d. NO. OF ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		\times	<1.0						1.	mg/L	lb/dy	<1.0		1
b. Chlorine, Total Residual		X				Contractor of a state			0	mg/L	lb/dy	<0.05		1
c. Color		\times							0					0
d. Fecal Coliform		\times							0	CFU/0.11	,	3		1
e. Fluoride (16984-48-8)	\times		1.0						1	mg/L	lb/dy	0.31		1
f. Nitrate-Nitrite (as N)	\times		0.80							mg/L	lb/dy	0.81		1

EPA Form 3510-2C (8-90)

CONTINUE ON REVERSE

Note: Outfall B01 data provided for this outfall, per IEPA authorization.

ITEM V-B CONT			- 					· · · · · · · · · · · · · · · · · · ·		.			Ou	tfall G01
1. POLLUTANT	2. MA	RK "X"				EFFLUENT		100 V/V	·	4. UNI	TS		AKE (option	al)
AND CAS NO.	a. BELIEVED	b. BELIEVED	a. MAXIMUM DA	ALLY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM A' (if availa		d. NO. OF	a, CONCEN-		a. LONG T AVERAGE V	ALUE	b, NO, OF
(if available)	PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		1.8						1	mg/L	lb/dy	1.1		1
h. Oil and Grease		\times	<5				<6		1,4	mg/L	lb/dy	<5		1
i. Phosphorus (as P), Total (7723-14-0)	\times		0.71						1	mg/L	lb/dy	<0.10		1
j. Radioactivity														
(1) Alpha, Total						.			0					0
(2) Beta, Total									0				-	0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (<i>as SO₄</i>) (14808-79-8)	\times		260						1	mg/L	lb/dy	55		1
I. Sulfide (as δ)		\times	2.7						1	mg/L	lb/dy	<2.0		1
m. Sulfite (<i>as SO</i> 3) (14265-45-3)		\times	2.8						1	mg/L	lb/dy	<2.0		1
n. Surfactants	1	$\times \mid$	0.16						1	mg/L	lb/dy	0.19		1
o. Aluminum, Total (7429-90-5)		\times	<0.050						1	mg/L	lb/dy	<0.050		1
p. Barium, Total (7440-39-3)	\times		0.22						1	mg/L	lb/dy	0.06		1
q. Boron, Total (7440-42-8)	\times		0.57						1	mg/L	lb/dy	0.35		1
r. Cobalt, Total (7440-48-4)		\times	<0.005						1	mg/L	lb/dy	<0.005		1
s. Iron, Total (7439-89-6)	\times		0.015						1	mg/L	lb/dy	0.08		1
t. Magnesium, Total (7439-95-4)	\times		52						1	mg/L	lb/dy	14		1
u. Molybdenum, Total (7439-98-7)	\times		0.019						1	mg/L	lb/dy	<0.010		1
v. Manganese, Total (7439-96-5)		\times	<0.010						1	mg/L	lb/dy	0.024		1
w. Tin, Total (7440-31-5)		\times	<0.060						1	mg/L	lb/dy	<0.060		1
x. Titanium, Total (7440-32-6)		\times	<0.005						1	mg/L	lb/dy	<0.005		1

				E	PA I.D. NUM	ABER (copy from Iter	m 1 of Form 1) OUTFALL NUM	IBER						
CONTINUED FROM	A PAGE 3 C	F FORM 2	-C			IL0000108		G01							
PART C - If you a fractions fractions provide discharg pollutan briefly d	re a primary s that apply s), mark "X' the results ged in conce ts which vo	y industry a to your inc in column of at least c entrations o u know or h reasons th	nd this out dustry and 2-b for ea- one analysi of 10 ppb of nave reaso ne pollutan	fall contains proces for ALL toxic meta ch pollutant you kn is for that pollutant, r greater, If you ma in to believe that you t is expected to be	ls, cyanides, ow or have If you mark rk column 2l ou discharge	, and total phenols. reason to believe is column 2b for any b for acrolein, acrylo in concentrations of	If you are n s present. Ma pollutant, you onitrile, 2,4 di of 100 ppb or	ot required to mark ark "X" in column 2 u must provide the initrophenol, or 2-m greater, Otherwise	c column 2- -c for each results of a hethyl-4, 6 c a for polluta	-a (secondary pollutant you t least one an linitrophenol, ants for which	industries, nor believe is abs alysis for that p you must provi you mark colu	nprocess wa ent. If you n pollutant if yo de the result mn 2b. you	estewater outfalls, a nark column 2a for ou know or have rea is of at least one ar must either submit	and nonrequ any pollutar ason to belia alysis for ea at least one	ired GC/MS at, you must eve it will be ach of these analysis or
	2	2. MARK "X	"				FFLUENT	••••••••••••••••••••••••••••••••••••••			4. UN	IITS	5. INT/	AKE (optiona	ıl)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availai		c. LONG TERN VALUE (if ava				ļ	a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANIDE	, AND TOT	AL PHENC	DLS	,, <u>, , , , , , , , , , , , , , , , , ,</u>					· · · · · · · · · · · · · · · · · · ·		·	/	• • • • • • • • • • • • • • • • • • •	L	
1M. Antimony, Total (7440-36-0)	X		\times	<20						1	ug/L	lb/dy	<20		1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20						1	ug/L	lb/dy	<20		1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5						1	ug/L	lb/dy	<5		1
4M. Cadmium, Total (7440-43-9)	\times		\times	<2						1	ug/L	lb/dy	<2		1
5M. Chromium, Total (7440-47-3)	\times		\times	<4						1	ug/L	lb/dy	<4		1.
6M. Copper, Total (7440-50-8)	\times	\times		35						1	ug/L	lb/dy	13		1
7M. Lead, Total (7439-92-1)	\times		\times	<10						1	ug/L	lb/dy	<10		1
8M. Mercury, Total (7439-97-6)	\times		\times	62						1	ng/L	lb/dy	<1		1
9M. Nickel, Total (7440-02-0)	\times		\times	<10						1	ug/L	lb/dy	<10		1
10M. Selenium, Total (7782-49-2)	\times		\times	22						1	ug/L	lb/dy	12		1
11M. Silver, Total (7440-22-4)	\times		\times	<10						1	ug/L	lb/dy	<10		1.
12M. Thallium, Total (7440-28-0)	\times		\times	<10						1	ug/L	lb/dy	<10		1
13M. Zinc, Total (7440-66-6)	\times		\times	<10						1	ug/L	lb/dy	<10		1
14M. Cyanide, Total (57-12-5)	\times		\times	<5						1	ug/L	lb/dy	<5		1
15M. Phenols, Total	\times		\times	<10						1	ug/L	lb/dy	<5		1
DIOXIN										111 Page					
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	LTS	······································					<u> </u>				

CONTINUE ON REVERSE

	2	2. MARK "X	11			3. E	FFLUENT				4. UN	IITS	5. INTA	AKE (option	<i>al</i>)
1. POLLUTANT AND	a,	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availal		c. LONG TERM VALUE (<i>if ave</i>			2011051		a. LONG T AVERAGE V	ERM /ALUE	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES		b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I - VOLATIL	E COMPO	UNDS				*		·				1		
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5						1	ug/L		<5		1
4V. Bis (Chloro- methyl) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		X	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5	****	1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		_ <5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	<5						1	ug/L		<5		1
11V. Chloroform (67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane (75-27-4)	\times		\times	< 5						1	ug/L		<5		 1
I3V. Dichloro- lifluoromethane 75-71-8)				Note 1									Note 1		
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- thane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V, 1,1-Dichloro- thylene (75-35-4)	\times		\times	<5						1	ug/L		<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	\times		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6) * *	\times		\times	<5						1	ug/L		<5		1
9V. Ethylbenzene 100-41-4)	\times		\times	<5						1	ug/L		<5		1
0V. Methyl romide (74-83-9)	\times		\times	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	XT		X	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO		2. MARK "X	"	γγ		3 F	FFLUENT				4. UN		5 INT	AKE (option	fall G01
1. POLLUTANT AND	a.	b.	C.	a, MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 I (if availab	DAY VALUE	c. LONG TERM VALUE (<i>if av</i>					a. LONG T AVERAGE	ERM	
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (com	tinued)											
22V. Methylene Chloride (75-09-2)	\times		\times	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5						1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		\times	<5						1	ug/L		<5		1
25V, Toluene (108-88-3)	\times		\times	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	$ \times $		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V, Trichloro- luoromethane 75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride 75-01-4)	\times		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	- ACID CO	MPOUNDS													
IA. 2-Chlorophenol 95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- ohenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A. 2,4-Dimethyl- henol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
A. 2,4-Dinitro- henol (51-28-5)	\times		\times	<50						1	ug/L		<50		1
A. 2-Nitrophenol 88-75-5)	\times		\times	<10						1	ug/L		<10		1
A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
A. P-Chloro-M- resol (59-50-7)	\times		\times	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	\times		\times	<50						1	ug/L		< 50		1
0A. Phenol 108-95-2)	X		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		X	<50						1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

	2	2. MARK "X	ม			3. E	FFLUENT				4. UN	ITS	5. INT/	AKE (optiona	/)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 I (if availai		c. LONG TERN VALUE (<i>if ave</i>		1 10 05	0.0110.511		a. LONG T AVERAGE \		Í
CAS NUMBER (if available)	TESTING REQUIRED	PRESENT	L	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	- BASE/NE	EUTRAL CO	DMPOUND	S		<u></u>		·····							
1B. Acenaphthene (83-32-9)	X		\times	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	X		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	\times		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	\times		\times	<80						1	ug/L		<80		1
5B, Benzo (<i>a</i>) Anthracene (56-55-3)	\times	*****	\times	<10						1	ug/L		<10		1
6B. Benzo (a) Pyrene (50-32-8)	\times		\times	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		\times	<10						1	ug/L		<10		1
8B. Benzo (<i>ghi</i>) Perylene (191-24-2)	\times		\times	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		\times	<10						1	ug/L		<10		1
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		\times	<10						1	ug/L		<10		1
11B. Bis (<i>2-Chloro-</i> ethyl) Ether (111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (3- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
13B. Bis (<i>2-Ethyl- hexyl</i>) Phthalate 117-81-7)	\times		\times	<10						1	ug/L		<10		1
I4B. 4-Bromophenyl Phenyl Ether 101-55-3)	\times		\times	<10						1	ug/L		<10		1
5B. Butyl Benzyl Phthalate (85-68-7)	X		\times	<10						1	ug/L		<10		1
6B. 2-Chloro- aphthalene 91-58-7)	\times		\times	<10						1	ug/L		<10		1
7B. 4-Chloro- henyl Phenyl Ether 7005-72-3)	\times		\times	<10						1	ug/L		<10		1
8B. Chrysene 218-01-9)	\times		\times	<10						1	ug/L		<10		1
9B. Dibenzo (<i>a,h</i>) Inthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
0B. 1,2-Dichloro- enzene (95-50-1)	X		\times	<10						1	ug/L		<10		1
1B. 1,3-Di-chloro- enzene (541-73-1)	X		XT	<10						1	ug/L		<10		1

CONTINUE ON PAGE V-7

CONTINUED FRO					11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1										all G01
	2	2. MARK "X	n 1				FFLUENT				4. UN	ITS	****	AKE (optiona	d)
1. POLLUTANT AND CAS NUMBER	a.	• b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		VALUE (if and		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \	/ALUE	
(if available)	TESTING REQUIRED	BELIEVED PRESENT	ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	N - BASE/N	EUTRAL CO	OMPOUNE	DS (continued)		·····									
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		$ \times$	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		X	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		X	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	Х		Х	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	X		Х	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		X	<10						1	ug/L		<10		1
31B. Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		\times	<10						1	ug/L		<10		1
33B. Hexachloro- benzene (118-74-1)	\times		X	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	X		\times	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		\times	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	\times		\times	<10						1	ug/L		<10		1
37B. Indeno (1,2,3-cd) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B. Isophorone 78-59-1)	X		X	<10						1	ug/L		<10		1
39B. Naphthalene 91-20-3)	\times		X	<10						1	ug/L	_	<10		1
40B. Nitrobenzene 98-95-3)	X		X	<10					-	1	ug/L		<10		1
1B, N-Nitro- odimethylamine 62-75-9)	X		\times	<10						1	ug/L		<10		1
12B. N-Nitrosodi- N-Propylamine 621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUE ON REVERSE

CONTINUED FRO				7					<u>. </u>				1		fall G0'
1, POLLUTANT		2. MARK "X	1			b. MAXIMUM 30	EFFLUENT	c. LONG TERM	MAVRG	<u> </u>	4. UN			KE (option	<i>al</i>) 1
AND	a.	b.	c. BELIEVED	a. MAXIMUM DA				VALUE (if av					a. LONG T AVERAGE \		
CAS NUMBER (if available)	<u></u>	PRESENT	ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	1	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OI ANALYSE
GC/MS FRACTION	I – BASE/N	EUTRAL CO	OMPOUND	S (continued)											
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10						1	ug/L		<10		1
44B. Phenanthrene (85-01-8)	\times		\times	<10						1	ug/L		<10		1
45B. Pyrene (129-00-0)	\times		\times	<10						1	ug/L		<10		1
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10						1	ug/L		<10		1
GC/MS FRACTION	I – PESTICI	DES													
1P. Aldrin (309-00-2)			\times												
2Ρ. α-BHC (319-84-6)			\times												
3P. β-BHC (319-85-7)			\times												
4Ρ. γ-BHC (58-89-9)			X												
5P. δ-BHC 319-86-8)			\times												
6P. Chlordane (57-74-9)			\times												
7P. 4,4'-DDT 50-29-3)			\times											11-31-14-14-14-14-14-14-14-14-14-14-14-14-14	
3P. 4,4'-DDE 72-55-9)			\times											`	
9P. 4,4'-DDD 72-54-8)			\times												
0P. Dieldrin 60-57-1)			\times												
1P. α-Enosulfan 115-29-7)			X												
2P. β-Endosulfan 115-29-7) 3P. Endosulfan			<u> </u>												
ulfate 1031-07-8)			\times												
4P. Endrin 72-20-8)			\times									_			
5P. Endrin Idehyde 7421-93-4)			\times												
6P. Heptachlor 76-44-8)			\times												

CONTINUE ON PAGE V-9

				EPA	EPA I.D. NUMBER (copy from Item 1 of Form I) IL0000108				BER						
CONTINUED FRO	M PAGE V-I	в			I	L0000108		GC)1						
		2. MARK "X'	,			3. E	FFLUENT			l.	4. UN	IITS	5. INT/	AKE (optiona	<i>al</i>)
1. POLLUTANT AND	а.	b.	с.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (<i>if av</i>			- 001051		a. LONG T AVERAGE V	ERM	
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	– PESTICI	DES (continu	ued)												
17P. Heptachlor Epoxide (1024-57-3)			Х												
18P. PCB-1242 (53469-21-9)			Х	<0.5						1	ug/L		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0						1	ug/L		<1.0		1
20P. PCB-1221 (11104-28-2)			\times	<1.0						1	ug/L		<1.0		1
21P. PCB-1232 (11141-16-5)			\times	<0.5						1	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		1
23P. PCB-1260 (11096-82-5)			\times	<1.0						1	ug/L		<1.0		1
24P. PCB-1016 (12674-11-2)			\times	<0.5						1	ug/L		<0.5		1
25P. Toxaphene (8001-35-2)			\times												

.

PAGE V-9

PLEASE PRINT OR TYPE IN THE UNSHADED AREAS ONLY. You may report some or all of this information on separate sheets (*use the same format*) instead of completing these pages. SEE INSTRUCTIONS.

EPA I.D. NUMBER (copy from Item 1 of Form 1) IL0000108

V. INTAKE AN	ID EFFLU	ENT CHARA	CTERISTICS (coi	ntinued from pag	e 3 of Fo	orm 2-C)			t de la companya de l La companya de la comp				(OUTFALL NO).
PART A -You	must prov	ide the result	s of at least one a	inalysis for every	[,] pollutan	nt in this tabl	e. Complete o	ne table for each	outfall. See insl	tructions for add	litional details.				
						2. EFFLU	ENT				3. UNI (specify if		1	. INTAKE (optional)	
			UM DAILY VALUE		JM 30 DA Favailable		c. LOI	NG TERM AVRG. (if available)	VALUE	d. NO. OF	a. CONCEN-		a. LONG T AVERAGE		b. NO. OF
1. POLLUT	ANT	(1) CONCENTRA	TION (2) MASS	(1) CONCENTRA		(2) MASS	(1) CONCE		(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
a. Biochemical Demand (BOD)		<4	< 38							1	mg/L	lb/dy	4.4	42	1
b. Chemical Ox Demand (COD)		22	210							1	mg/L	lb/dy	14	130	1
c. Total Organi (<i>TOC</i>)	c Carbon	5.	1 48							1	mg/L	lb/dy	6.2	58	1
d. Total Susper Solids (<i>TSS</i>)	nded	21	200	50		1,250	1	6	80	1,5,53	mg/L	lb/dy	12	110	1
e. Ammonia (as	; N)	0.	23 2							1	mg/L	lb/dy	<0.10	<1	1
f. Flow		VALUE	1.13	VALUE	3.01		VALUE	0.6		1,5,53	MGD		VALUE		
g. Temperature (winter)		VALUE	9	VALUE			VALUE			1	°C		VALUE		
h. Temperature (summer)		VALUE		VALUE			VALUE			0	°C		VALUE		
i. pH		MINIMUM 7.38	MAXIMUM 7.49	MINIMUM 6.9	MA	XIMUM 7.6				1,24	STANDARD	UNITS			
dire	ctly, or in	directly but e		ffluent limitations	s guidelir	ne, you mus	st provide the	results of at leas	t one analysis	for that pollutar	nt. For other pol	utants for v	umn 2a for any pollu vhich you mark colu		
		ARK "X"			T		EFFLUENT				4. UN	IITS		AKE (option	<i>al</i>)
1. POLLUTANT AND	a,	b.	a. MAXIMUM	DAILY VALUE		(if availa	DAY VALUE <i>ble)</i>	c. LONG TERM (if ava			- 000050		a. LONG TERM VALU		1 110 05
CAS NO. (if available)	BELIEVE PRESEN		(1) CONCENTRATIO	N (2) MASS	CONCE	(1) NTRATION	(2) MASS	(1) CONCENTRATIO	N (2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
a. Bromide (24959-67-9)		\times	<1.0	< 9						1	mg/L	lb/dy	<1.0	<9	1
b. Chlorine, Total Residual		\times								0	mg/L	lb/dy	<0.05		1
c. Color		\times								0					0
d, Fecal Coliform	\times									0	CFU/0.11		3		1
e. Fluoride (16984-48-8)	\times		0.32	3						1	mg/L	lb/dy	0.31	3	1
f. Nitrate-Nitrite (as M)	X		0.86	8						1	mg/L	lb/dy	0.81	8	1

CONTINUE ON REVERSE

ITEM V-B CONT			r											tfall 002
1. POLLUTANT	2. MA	кк "Х" 			3. b. MAXIMUM 30	DAY VALUE	c. LONG TERM A	VRG, VALUE	1	4. UNI	18	5. INT a. LONG T	AKE (option	al)
AND CAS NO.	a,	b.	a. MAXIMUM D.	AILY VALUE	(if availa		(if availa		d. NO, OF	a, CONCEN-		AVERAGE \		
(if available)	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
g. Nitrogen, Total Organic (<i>as</i> <i>N</i>)	\times		1.3	12					1	mg/L	lb/dy	1.1	10	1
h. Oil and Grease		\times	<5	<50	<7	<180	<6	<30	1,1,12	mg/L	lb/dy	<5	<50	1
i. Phosphorus (as P), Total (7723-14-0)	\times		0.13	1.2					1	mg/L	lb/dy	<0.10	<0.9	1
j. Radioactivity														
(1) Alpha, Total									0		·			0
(2) Beta, Total			·····						0					0
(3) Radium, Total									0					0
(4) Radium 226, Total									0					0
k. Sulfate (as SO4) (14808-79-8)	\times		96	900					1	mg/L	lb/dy	55	520	1
I. Sulfide (as S)		\times	<2.0	<20					1	mg/L	lb/dy	<2.0	<20	1
m. Sulfite (as SO ₃) (14265-45-3)		\times	<2.0	<20					1	mg/L	lb/dy	<2.0	<20	1
n. Surfactants		\times	0.10	0.9					1	mg/L	lb/dy	0.19	1.8	1
o. Aluminum, Total (7429-90-5)	\times		0.29	2.7					1	mg/L	lb/dy	<0.050	<0.5	1
p. Barium, Total (7440-39-3)	\times		0.10	0.9			•		1	mg/L	lb/dy	0.06	0.6	1
q. Boron, Total (7440-42-8)	\times		0.47	4.4	1.1	28	0.60	3.0	1,1,12	mg/L	lb/dy	0.35	3.3	1.
r. Cobalt, Total (7440-48-4)		\times	<0.005	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1
s, Iron, Total (7439-89-6)	\times		0.33	3.1	0.37	9.2	0.15	0.7	1,4	mg/L	lb/dy	0.08	0.7	1
t. Magnesium, Total (7439-95-4)	\times		17	160					1	mg/L	lb/dy	14	130	1
u. Molybdenum, Total (7439-98-7)		\times	<0.010	<0.1					1	mg/L	lb/dy	<0.010	<0.1	1
v. Manganese, Total (7439-96-5)	\times		0.022	0.2	0.038	0.9	0.020	0.1	1,1,12	mg/L	lb/dy	0.024	0.2	1
w. Tin, Total (7440-31-5)	\times		<0.060	<0.6					1	mg/L	lb/dy	<0.060	<0.6	1
r. Titanlum, Fotal 7440-32-6)	\times		0.008	<0.1					1	mg/L	lb/dy	<0.005	<0.1	1

				E	PA I.D. NUM	ABER (copy from Ite	m 1 of Form 1) OUTFALL NUM	IBER						
CONTINUED FROM	M PAGE 3 C	OF FORM 2-	-C			IL0000108		002	:						
PART C - If you a fraction fraction provide dischar pollutar briefly d	re a primary s that apply s), mark "X' the results ged in conce ts which vo	y industry a to your inc in column of at least c entrations o u know or h reasons th	nd this out dustry and 2-b for eac one analysis of 10 ppb or have reason ne pollutant	for ALL toxic meta ch pollutant you kn s for that pollutant. greater. If you ma n to believe that yo	Is, cyanides, low or have If you mark irk column 21 ou discharge	er, refer to Table 2c, and total phenols, reason to believe is column 2b for any o for acrolein, acryle in concentrations c . Note that there a	If you are n s present. Ma pollutant, you onitrile, 2,4 d of 100 ppb or	ot required to mark ark "X" in column 2 a must provide the initrophenol, or 2-m greater. Otherwise	column 2 -c for each results of a nethyl-4, 6 c for polluta	-a (secondary pollutant you t least one an dinitrophenol, ants for which	r industries, nor believe is abs alysis for that p you must provid you mark colu	nprocess wa ent. If you m pollutant if yo de the result mn 2b, you	stewater outfalls, a nark column 2a for ou know or have re- s of at least one ar must either submit	and nonrequi any pollutar ason to beli alysis for er at least one	<i>iired GC/MS</i> nt, you must eve it will be ach of these analysis or
	2	2. MARK "X					FFLUENT			····	4. UN	ITS	5. INT/	AKE (optiond	ıl)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 (if availa		c. LONG TERM VALUE (if ava					a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF ANALYSES
METALS, CYANIDI	E, AND TOT	AL PHENC	DLS	•	.	, <u>, , , , , , , , , , , , , , , , , , </u>		·		- <u>k</u>		·	· · · · · · · · · · · · · · · · · · ·	L	4
1M. Antimony, Total (7440-36-0)	\times		\times	<20	<0.19					1	ug/L	lb/dy	<20	<0.19	1
2M. Arsenic, Total (7440-38-2)	\times		\times	<20	<0.19					1	ug/L	lb/dy	<20	<0.19	1
3M. Beryllium, Total (7440-41-7)	\times		\times	<5	<0.05					1	ug/L	lb/dy	<5	<0.05	1
4M. Cadmium, Total (7440-43-9)	\times		\times	<2	<0.02					1	ug/L	lb/dy	<2	<0.02	1
5M. Chromium, Total (7440-47-3)	\times		\times	<4	<0.04					1	ug/L	lb/dy	<4	<0.04	1
6M. Copper, Total (7440-50-8)	\times		\times	10	0.09					1	ug/L	lb/dy	13	0.12	1
7M. Lead, Total (7439-92-1)	\times		\times	<10	<0.09					1	ug/L	lb/dy	<10	<0.09	1
8M. Mercury, Total (7439-97-6)	\times		\times	1.7	<0.01					1	ng/L	lb/dy	<1	<0.01	1
9M. Nickel, Total (7440-02-0)	\times		\times	<10	<0.09					1	ug/L	lb/dy	<10	<0.09	1
10M. Selenium, Total (7782-49-2)	\times		\times	12	0.11					1	ug/L	lb/dy	12	0.11	1
11M. Silver, Total (7440-22-4)	\times		\times	<10	<0.09					1	ug/L	lb/dy	<10	<0.09	1
12M. Thallium, Total (7440-28-0)	\times		\times	<10	<0.09					1	ug/L	lb/dy	<10	<0.09	1
13M. Zinc, Total (7440-66-6)	\times		\times	<10	<0.09					1	ug/L	lb/dy	<10	<0.09	1
14M. Cyanide, Total (57-12-5)	\times		\times	<5	<0.05					1	ug/L	lb/dy	<5	<0.05	1
15M. Phenols, Total	\times		\times	<10	<0.09					1	ug/L	lb/dy	<5	<0.09	1
DIOXIN						anan ta									
2,3,7,8-Tetra- chlorodibenzo-P- Dioxin (1764-01-6)			\times	DESCRIBE RESU	LTS										
EPA Form 3510.20	(0.00)						PAGE	1/ 3					CON		

	2	2. MARK "X'	u			3. E	FFLUENT				4. UN	ITS	5. INT/	AKE (option	<i>al</i>)
1. POLLUTANT AND	a,	b.	C.	a. MAXIMUM DA	ILY VALUE	b. MAXIMUM 30 ((if availat		c. LONG TERN VALUE (if ava		d. NO. OF	a. CONCEN-		a. LONG T AVERAGE \		
CAS NUMBER (if available)	TESTING REQUIRED		BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPOL	JNDS	••••••										*	
1V. Accrolein (107-02-8)	\times		\times	<50						1	ug/L		<50		1
2V. Acrylonitrile (107-13-1)	\times		\times	<50						1	ug/L		<50		1
3V. Benzene (71-43-2)	\times		\times	<5						1	ug/L		<5		1
4V. Bis (<i>Chloro-</i> <i>methyl</i>) Ether (542-88-1)				Note 1									Note 1		
5V. Bromoform (75-25-2)	\times		\times	<5						1.	ug/L		<5		1
6V. Carbon Tetrachloride (56-23-5)	\times		\times	<5						1	ug/L		<5		1
7V. Chlorobenzene (108-90-7)	\times		\times	<5						1	ug/L		<5		1
8V. Chlorodi- bromomethane (124-48-1)	\times		\times	<5						1	ug/L		<5		1
9V. Chloroethane (75-00-3)	\times		\times	<5						1	ug/L		<5		1
10V. 2-Chloro- ethylvinyl Ether (110-75-8)	\times		\times	<5						1	ug/L		< 5		1
11V. Chloroform 67-66-3)	\times		\times	Note 2									Note 2		
12V. Dichloro- promomethane (75-27-4)	\times		\times	<5						1	ug/L		<5		1
I3V. Dichloro- lifluoromethane 75-71-8)				Note 1									Note 1		
14V. 1,1-Dichloro- ethane (75-34-3)	\times		\times	<5						1	ug/L		<5		1
5V. 1,2-Dichloro- thane (107-06-2)	\times		\times	<5						1	ug/L		<5		1
6V. 1,1-Dichloro- hylene (75-35-4)	$\times \mid$		\times	<5						1	ug/L	_	<5		1
7V. 1,2-Dichloro- ropane (78-87-5)	\times		\times	<5						1	ug/L		<5		1
8V. 1,3-Dichloro- ropylene 542-75-6)	\times		\times	<5						1	ug/L		<5		1
9V, Ethylbenzene 100-41-4)	\times		\times	<5						1	ug/L		<5		1
0V. Methyl Iromide (74-83-9)	X		X	<5						1	ug/L		<5		1
1V. Methyl hloride (74-87-3)	XT		XI	<5						1	ug/L		<5		1

PAGE V-4

CONTINUE ON PAGE V-5

Note 1 - These parameters deleted per 40CFR122, Appendix D.

Note 2 - Analysis suspect therefore no data provided for this constituent.

** This parameter is 1,3-Dichloropropylene per 40CFR122, Appendix D.

CONTINUED FRO			"			3. E	FFLUENT				4. UN	ITS	5 INT4	AKE (option	fall 002
1. POLLUTANT AND	a.	b,	с.	a. MAXIMUM DAI	LY VALUE	b. MAXIMUM 30 [(if availab	DAY VALUE	c. LONG TERM VALUE (if ave					a. LONG T AVERAGE V	ERM	<u> </u>
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	I – VOLATIL	E COMPO	UNDS (con	tinued)											
22V. Methylene Chloride (75-09-2)	\times		X	<5						1	ug/L		<5		1
23V. 1,1,2,2- Tetrachloroethane (79-34-5)	\times		\times	<5						1	ug/L		<5		1
24V. Tetrachloro- ethylene (127-18-4)	\times		$ \times$	<5						1	ug/L		<5		1
25V. Toluene (108-88-3)	\times		$ \times$	<5						1	ug/L		<5		1
26V. 1,2-Trans- Dichloroethylene (156-60-5)	\times		\times	<20						1	ug/L		<20		1
27V. 1,1,1-Trichloro- ethane (71-55-6)	\times		\times	<5						1	ug/L		<5		1
28V. 1,1,2-Trichloro- ethane (79-00-5)	\times		\times	<5						1	ug/L		<5		1
29V Trichloro- ethylene (79-01-6)	\times		\times	<5						1	ug/L		<5		1
30V. Trichloro- fluoromethane (75-69-4)				Note 1									Note 1		
31V. Vinyl Chloride (75-01-4)	\times		\times	<5						1	ug/L		<5		1
GC/MS FRACTION	– ACID COI	MPOUNDS				<u></u>									
1A. 2-Chlorophenol (95-57-8)	\times		\times	<10						1	ug/L		<10		1
2A. 2,4-Dichloro- ohenol (120-83-2)	\times		\times	<10						1	ug/L		<10		1
3A. 2,4-Dimethyl- ohenol (105-67-9)	\times		\times	<10						1	ug/L		<10		1
4A. 4,6-Dinitro-O- Cresol (534-52-1)	\times		\times	<50						1	ug/L		<50		1
5A. 2,4-Dinitro- ohenol (51-28-5)	\times		\times	<50						1	ug/L		<50		1
6A, 2-Nitrophenol 88-75-5)	\times		\times	<10						1	ug/L		<10		1
A. 4-Nitrophenol 100-02-7)	\times		\times	<50						1	ug/L		<50		1
BA. P-Chloro-M- Cresol (59-50-7)	\times		\times	<10						1	ug/L		<10		1
A. Pentachloro- henol (87-86-5)	X		\times	<50						1	ug/L		<50		1
0A. Phenol 108-95-2)	\times		\times	<10						1	ug/L		<10		1
1A. 2,4,6-Trichloro- henol (88-05-2)	X		X	<50						1	ug/L		<50		1

PAGE V-5

CONTINUE ON REVERSE

Note 1 - This parameter deleted per 40CFR122, Appendix D.

	2	2. MARK "X	"				FFLUENT				4. UN	ITS	5. INT/	AKE (optiond	ul)
1. POLLUTANT AND	a.	b.	c.	a. MAXIMUM DA		b. MAXIMUM 30 (if availal		c. LONG TERM VALUE (<i>if av</i>					a. LONG T AVERAGE V		
CAS NUMBER (if available)	TESTING REQUIRED	BELIEVED PRESENT	BELIEVED ABSENT	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	d. NO. OF ANALYSES	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	b. NO. OF
GC/MS FRACTION	- BASE/NE	EUTRAL CO	DMPOUND	S				+			·····	••••			
1B. Acenaphthene (83-32-9)	X		$ \times$	<10						1	ug/L		<10		1
2B. Acenaphtylene (208-96-8)	\times		\times	<10						1	ug/L		<10		1
3B. Anthracene (120-12-7)	Х		\times	<10						1	ug/L		<10		1
4B. Benzidine (92-87-5)	Х		X	<80						1	ug/L		<80		1
5B. Benzo (a) Anthracene (56-55-3)	\times		X	<10						1	ug/L		<10		1
6B. Benzo (a) Pyrene (50-32-8)	X		Х	<10						1	ug/L		<10		1
7B. 3,4-Benzo- fluoranthene (205-99-2)	\times		X	<10						1	ug/L		<10		1
8B. Benzo (ghi) Perylene (191-24-2)	X		X	<10						1	ug/L		<10		1
9B. Benzo (k) Fluoranthene (207-08-9)	\times		X	<10						1	ug/L		<10		1
10B. Bis (2-Chloro- ethoxy) Methane (111-91-1)	\times		X	<10						1	ug/L		<10		1
11B. Bis (2-Chloro- ethyl) Ether (111-44-4)	\times		\times	<10						1	ug/L		<10		1
12B. Bis (2- Chloroisopropyl) Ether (102-80-1)	\times		\times	<10						1	ug/L		<10		1
13B. Bis (2-Ethyl- hexyl) Phthalate (117-81-7)	\times		\times	<10						1	ug/L		<10		1
14B. 4-Bromophenyl Phenyl Ether (101-55-3)	\times		\times	<10						1	ug/L		<10		1
15B. Butyl Benzyl Phthalate (85-68-7)	$\times \mid$		\times	<10						1	ug/L		<10		1
16B. 2-Chloro- naphthalene (91-58-7)	\times		\times	<10						1	ug/L		<10		1
17B. 4-Chloro- phenyl Phenyl Ether (7005-72-3)	\times		\times	<10						1	ug/L		<10		1
18B. Chrysene (218-01-9)	X		\times	<10						1	ug/L		<10		1
19B. Dibenzo (<i>a,h</i>) Anthracene 53-70-3)	\times		\times	<10						1	ug/L		<10		1
20B. 1,2-Dichloro- benzene (95-50-1)	\times		\times	<10						1	ug/L		<10		1
21B. 1,3-Di-chloro- benzene (541-73-1)	X		X	<10						1	ug/L		<10		1

CONTINUE ON PAGE V-7

CONTINUED FRO													······		all 002
	2	2. MARK "X	»				FFLUENT				4. UN	ITS		AKE (optiond	ıl)
1. POLLUTANT AND CAS NUMBER	a.	b.	C.	a. MAXIMUM DA	LY VALUE	b. MAXIMUM 30 (if availad		VALUE (if ava		d. NO, OF	a. CONCEN-		a. LONG T AVERAGE \	/ALUE	b. NO. OF
(if available)	TESTING REQUIRED	PRESENT	BELIEVED ABSENT	CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION	(2) MASS	ANALYSES	TRATION	b. MASS	(1) CONCENTRATION	(2) MASS	ANALYSES
GC/MS FRACTION	I – BASE/N	EUTRAL CO	OMPOUNE	S (continued)					····	- <u>}</u>			······		
22B. 1,4-Dichloro- benzene (106-46-7)	\times		\times	<10						1	ug/L		<10		1
23B. 3,3-Dichloro- benzidine (91-94-1)	\times		\times	<20						1	ug/L		<20		1
24B. Diethyl Phthalate (84-66-2)	\times		\times	<10						1	ug/L		<10		1
25B. Dimethyl Phthalate (131 -11-3)	\times		\times	<10						1	ug/L		<10		1
26B. Di-N-Butyl Phthalate (84-74-2)	\times		\times	<10						1	ug/L		<10		1
27B. 2,4-Dinitro- toluene (121-14-2)	\times		\times	<10						1	ug/L		<10		1
28B. 2,6-Dinitro- toluene (606-20-2)	\times		\times	<10						1	ug/L		<10		1
29B. Di-N-Octyl Phthalate (117-84-0)	\times		Х	<10						1	ug/L		<10		1
30B. 1,2-Diphenyl- hydrazine (as Azo- benzene) (122-66-7)	\times		\times	<10						1	ug/L		<10		1
31B, Fluoranthene (206-44-0)	\times		\times	<10						1	ug/L		<10		1
32B. Fluorene (86-73-7)	\times		X	<10						1	ug/L		<10		1
33B, Hexachloro- benzene (118-74-1)	X		X	<10						1	ug/L		<10		1
34B. Hexachloro- butadiene (87-68-3)	X		X	<10						1	ug/L		<10		1
35B. Hexachloro- cyclopentadiene (77-47-4)	\times		X	<50						1	ug/L		<50		1
36B Hexachloro- ethane (67-72-1)	X		X	<10						1	ug/L		<10		1
37B. Indeno (<i>1,2,3-cd</i>) Pyrene (193-39-5)	\times		\times	<10						1	ug/L		<10		1
38B, Isophorone (78-59-1)	X		\times	<10						1	ug/L		<10		1
39B. Naphthalene (91-20-3)	X		X	<10						1	ug/L		<10		1
40B. Nitrobenzene (98-95-3)	X		\times	<10						1	ug/L		<10		1
41B. N-Nitro- sodimethylamine 62-75-9)	\times		\times	<10						1	ug/L		<10		1
42B. N-Nitrosodi- N-Propylamine 621-64-7)	\times		\times	<10						1	ug/L		<10		1

CONTINUE ON REVERSE

÷

CONTINUED FROM THE FRONT	M THE FRON	ONT 2 MARK "X"			3 FFFILIENT			4. UNITS	TS	5. INTAK	5. INTAKE (optional)	Outtall 002
	i a	d d		a. MAXIMUM DAILY VALUE	b. MAXIMUM (if av	c. LONG TERM AVRG. VALUE (<i>if available</i>)				a. LONG TERM AVERAGE VALUE		
	TESTING B REQUIRED P	VED ENT	BELIEVED			(1) CONCENTRATION (2) MASS	d. NO. OF	a. CONCEN- TRATION	b. MASS	(1) CONCENTRATION	ASS	b. NO. OF ANALYSES
NON	- BASE/NEU	TRAL COM	POUNDS		1 1							
43B. N-Nitro- sodiphenylamine (86-30-6)	\times		\times	<10			1	ı/bu		<10		7
44B. Phenanthrene (85-01-8)	X		X	<10			ы	ug/L		<10		
45B. Pyrene (129-00-0)	\times		\times	<10			1	ug/L		<10		
46B. 1,2,4-Tri- chlorobenzene (120-82-1)	\times		\times	<10			1	ng/L		<10		ы
GC/MS FRACTION - PESTICIDES	I - PESTICIDE	ES										
1P. Aldrin (309-00-2)			\times									
2P. α-BHC (319-84-6)			\times									
3P. β-BHC (319-85-7)			X									
4P. _Y -BHC (58-89-9)			\times									
5P. 8-BHC (319-86-8)			\times					4 				
6P. Chlordane (57-74-9)			\times									
7P.4,4'-DDT (50-29-3)			X									
8P. 4,4'-DDE (72-55-9)			X									
9P.4,4'-DDD (72-54-8)			X									
10P. Dieldrin (60-57-1)			\times									
11P. α-Enosulfan (115-29-7)			\times									
12P. β-Endosulfan (115-29-7)			X									
13P. Endosulfan Sulfate (1031-07-8)			X									
14P. Endrin (72-20-8)			Х					,				
15P. Endrin Aldehyde (7421-93-4)			\times									
16P. Heptachlor (76-44-8)			\times									
EPA Form 3510-2C (8-90)	(8-90)				PAGE V-8	۷-8				CONT	CONTINUE ON PAGE V-9	AGE V-9

				EPAI	.D. NUMBEI	EPAI.D. NUMBER (copy from Item 1 of Form 1)	f Form 1)	OUTFALL NUMBER	R						
CONTINUED FROM PAGE V-8	DM PAGE V-	φ			II	IL0000108		002							
		2. MARK "X"				3. El	3. EFFLUENT				4. UNITS	ITS	5. INTAK	5. INTAKE (optional)	
1. POLLUTANT AND	6	<u>م</u>	ن	a. MAXIMUM DAILY VALUE	ΓΥ VALUE	b. MAXIMUM 30 DAY VALUE (if available)	AY VALUE	c. LONG TERM AVRG. VALUE (<i>if available</i>)					a. LONG TERM AVERAGE VALUE		
CAS NUMBER (if available)	TESTING REQUIRED	PRE	AB	(1) CONCENTRATION	(2) MASS	(1) CONCENTRATION (2) MASS		(1) CONCENTRATION (2) MASS	2) MASS A	d. NU. UF	a. CONCEN- TRATION	b. MASS	CONCENTRATION (2) MASS		b. NO. OF ANALYSES
GC/MS FRACTION – PESTICIDES (continued)	N - PESTICI	IDES (continu	(pən												
17P. Heptachlor Epoxide			\times												
(10/24-5/-3) 18P. PCB-1242 (53469-21-9)			$\langle \times$	<0.5						1	ug/I		<0.5		1
19P. PCB-1254 (11097-69-1)			\times	<1.0							ug/L		<1.0		
20P. PCB-1221 (11104-28-2)			\times	<1.0							ug/L		<1.0		
21P. PCB-1232 (11141-16-5)			\times	<0.5						н	ug/L		<0.5		1
22P. PCB-1248 (12672-29-6)			\times	<0.5						1	ug/L		<0.5		г
23P. PCB-1260 (11096-82-5)			\times	<1.0							ug/L		<1.0		
24P. PCB-1016 (12674-11-2)			\times	<0.5							ug/L		<0.5		Ч
25P. Toxaphene (8001-35-2)			\times												
								0-7							

PAGE V-9

Please print or type in the ur FORM				000108		xpires 5-31-92.	
2E SEPA	. Faciliti	es Whi	ich Do l	Not Dischar	ge Proces	s Wastew	/ate
I. RECEIVING WATERS							
F. States of the second se	For this outfall	, list the lat	itude and lo	ongitude, and name	of the receiving	y water(s).	
Outfall Number <i>(list)</i>	Latitude	Longit	ude Re	eceiving Water (name)	n de la construit de la dans de la		
Deg	Min Sec	Deg Mir	n Sec	Coffeen Lake			
003 39	03 36	89 24	18				
II. DISCHARGE DATE (If a	a new discharger, exist:		expect to beg	in discharging)		****	
III. TYPE OF WASTE		Ing					ist Ricks
A. Check the box(es) indic	ating the general	type(s) of wa	stes discharge	ed.		(intake scr	een ba
Sanitary Wastes	Restaurant	t or Cafeteria	Wastos	Noncontact C	••!: \A/-+	Other Nonpro	cess
IV. EFFLUENT CHARACT A. Existing Sources – authority (see instru B. New Dischargers –	– Provide measu ections). – Provide estimat	tes for the par	ameters lister	l in the left-hand column	helow unless waiv	ed by the permittin	
 A. Existing Sources – authority (see instru B. New Dischargers – authority. Instead of 	– Provide measu ections). – Provide estimat	tes for the par	rameters listec taken, provide	I in the left-hand column the source of estimated (2)	below, unless waiv I values <i>(see instru</i>	red by the permittin ctions).	
A. Existing Sources – authority (see instru B. New Dischargers –	– Provide measu ections). – Provide estimat	tes for the par easurements (1)	ameters listec taken, provide	l in the left-hand column the source of estimated	below, unless waiv I values <i>(see instru</i> Daily st year)	red by the permittin ctions).	g or)
 A. Existing Sources – authority (see instru B. New Dischargers – authority. Instead of Pollutant or Parameter 	– Provide measu ections). – Provide estimat	tes for the par easurements (1) Maximum Daily Valua <i>(include uni</i> i)	ameters listec taken, provide	t in the left-hand column the source of estimated (2) Average Value (la:	below, unless waiv I values <i>(see instru</i> Daily st year)	ed by the permittin ctions). (3) (Number of	g or) Sourc
 A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or 	Provide measu (ctions). Provide estimat the number of m	tes for the par easurements (1) Maximum Daily Valua <i>(include uni</i> i)	rameters listec taken, provide e s	t in the left-hand column the source of estimated (2, Average Value (la: (include	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken	g or) Sourc
 A. Existing Sources – authority (see instru B. New Dischargers – authority. Instead of Pollutant or Parameter Biochemical Oxygen 	Provide measu ctions). Provide estimat the number of m Mas	tes for the par easurements (1) Maximum Daily Valua <i>(include uni</i> i)	rameters listed taken, provide s (s) Concentration	t in the left-hand column the source of estimated (2, Average Value (la: (include	below, unless waiv I values (see instru Daily st year) units)	(3) (3) (4) Number of Measurements Taken (last year)	9 or) Source
 A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) 	Provide measu ctions). Provide estimal the number of m Mas sent	tes for the par easurements (1) Maximum Daily Valua <i>(include uni</i> i)	rameters listed taken, provide s; Concentration 4.4 mg/L	t in the left-hand column the source of estimated (2, Average Value (la: (include	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority. Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed press	Provide measu ctions). Provide estimal the number of m Mas sent	tes for the par easurements (1) Maximum Daily Valua <i>(include uni</i> i)	rameters listed taken, provide s; S) Concentration 4.4 mg/L 12 mg/L	t in the left-hand column the source of estimated (2, Average Value (la: (include	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 1	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority. Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if	Provide measu ctions). Provide estimal the number of m Mas sent	tes for the par easurements (1) Maximum Daily Value (include unit is	rameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA	t in the left-hand column the source of estimated (2, Average Value (la: (include	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 1 0	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used)	- Provide measu ctions). - Provide estimat the number of m Mas sent (ed)	tes for the par easurements (1) Maximum Daily Value (include unit is	rameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA	t in the left-hand column the source of estimated (2, Average Value (la: (include	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 1 1 0 0 0 0	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used) Oil and Grease	- Provide measu ctions). - Provide estimat the number of m Mas sent (ed)	tes for the par easurements (1) Maximum Daily Value (include unit is	rameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA NA	I in the left-hand column e the source of estimated (2) Average Value (la: (include Mass	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority. Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used) Oil and Grease	- Provide measu ctions). - Provide estimat the number of m Mas sent (ed)	tes for the par easurements (1) Maximum Daily Value (include unit is	rameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA S.0 mg/L 14 mg/L	I in the left-hand column e the source of estimated (2) Average Value (la: (include Mass	below, unless waiv I values (see instru Daily st year) units)	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 0 0 1 1 1 1 1 1 1 1 1 1	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (Co	- Provide measu ctions). - Provide estimat the number of m Mas sent (ed)	tes for the par easurements (1) Maximum Daily Value (include unit is	rameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA S5.0 mg/L 14 mg/L 6.2 mg/I <0.10mg/I	I in the left-hand column e the source of estimated (2) Average Value (la: (include Mass	below, unless waiv I values (see instru Daily st year) units) Concentration	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 0 0 1 1 1 1 1 1 1 1 1 1	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (Cu *Total organic carbon (TOC) Ammonia (as N)	Provide measu ctions). Provide estimat the number of m Mas sent ed) OD) OD	tes for the par easurements (1) Maximum Daily Value (include unit is	ameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA c5.0 mg/L 14 mg/L 6.2 mg/I <0.10mg/I ED	I in the left-hand column e the source of estimated (2) Average Value (la: (include Mass	below, unless waiv I values (see instru Daily st year) units) Concentration	ed by the permittin ctions). (3) (Number of Measurements Taken (last year) 1 0 0 1 1 1 1 1 1 1 1 1 1	9 or) Source
A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (Cd *Total organic carbon (TOC) Ammonia (as N) Discharge Flow	- Provide measu ctions). - Provide estimat the number of m Mas sent ed) OD) Value	tes for the par easurements (1) Maximum Daily Value (include unit ss	ameters listed taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA c5.0 mg/L 14 mg/L 6.2 mg/I <0.10mg/I ED	I in the left-hand column e the source of estimated (2) Average Value (la: (include Mass	below, unless waiv I values (see instru Daily st year) units) Concentration	ed by the permittin ctions).	g
A. Existing Sources – authority (see instru B. New Dischargers – authority: Instead of Pollutant or Parameter Biochemical Oxygen Demand (BOD) Total Suspended Solids (TSS) Fecal Coliform (if believed pres or if sanitary waste is discharg Total Residual Chlorine (if chlorine is used) Oil and Grease *Chemical oxygen demand (Cd *Total organic carbon (TOC) Ammonia (as N) Discharge Flow PH (give range)	- Provide measu ctions). - Provide estimat the number of m Mas sent ed) OD) Value	tes for the par easurements (1) Maximum Daily Value (include unit ss	ameters listec taken, provide (s) Concentration 4.4 mg/L 12 mg/L NA NA (S) 0 mg/L 14 mg/L 6.2 mg/I (0.10mg/I (D) .47 11,	I in the left-hand column e the source of estimated (2) Average Value (la: (include Mass	below, unless waiv I values (see instru Daily st year) units) Concentration	ed by the permittin ctions).	9 or) Source

V. Except for leaks or spills, will the discharge described in this form be intermittent or seasonal?	······································
If yes, briefly describe the frequency of flow and duration.	□ No
Intake screen backwash pumps are typically operated three times per day.	
	- Chi 100 Avrights, softwart, a toxica regioners - restaur toxica - so
VI. TREATMENT SYSTEM (Describe briefly any treatment system(s) used or to be used)	
None, "screened" Coffeen Lake waater is used to wash the intake screens.	
VII. OTHER INFORMATION (Optional)	
VII. OTHER INFORMATION (Optional) Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel.
Use the space below to expand upon any of the above guestions or to bring to the attention of the reviewer any other	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	Information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	Information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	Information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary.	Information you feel
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary. Provided flow values are calculated based on pump capacity and runtime. Vill. CERTIFICATION VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super	vísion in proorfance with a
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary. Provided flow values are calculated based on pump capacity and runtime. Vill. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on persons who manage the system, or those persons directly responsible for athering the information the information.	vision in accordance with a n my inquiry of the person or n submitted is to the best of
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary. Provided flow values are calculated based on pump capacity and runtime. Vill. CERTIFICATION VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super	vision in accordance with a n my inquiry of the person or n submitted is to the best of
VIII. CERTIFICATION VIII. CERTIFICATION VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based or persons who manage the system, or those persons directly responsible for gathering the information, the information my knowledge and belief, true, accurate, and complete. J am aware that there are similicant neurables for submitted.	vision in accordance with a n my inquiry of the person or n submitted is to the best of
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary. Provided flow values are calculated based on pump capacity and runtime. VIII. CERTIFICATION Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow values are calculated based on pump capacity and runtime. Visconserved flow participation of the prosent property gather and evaluate the information submitted. Based on persons who manage the system, or those persons directly responsible for gathering the information, the information my knowledge and belief, true, accurate, and complete. I am	vision in accordance with a n my inquiry of the person or n submitted is to the best of g false information, including B. Phone No. (area code & no.)
VIII. CERTIFICATION VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super system designed to assure that qualified persons directly responsible for gathering the information, the information my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting the possibility of line and imprisonment for knowing violations. A. Name & Official Title Michael L. Menne, Vice President - Environmental Services	vision in accordance with a n my inquiry of the person or n submitted is to the best of g false information, including B. Phone No. (area code
Use the space below to expand upon any of the above questions or to bring to the attention of the reviewer any other should be considered in establishing permit limitations. Attach additional sheets, if necessary. Provided flow values are calculated based on pump capacity and runtime. VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super system designed to assure that qualified personnel properly gather and evaluate the information, the information my knowledge and belef, frue, accurate, and complete. I am aware that there are significant penalties for submitting the possibility of fine and imprisonment for knowing violations. A. Name & Official Title Michael L. Menne, Vice President - Environmental Services	vision in accordance with a n my inquiry of the person or n submitted is to the best of g false information, including B. Phone No. (area code & no.) 314-554-2816 D. Date Signed
VIII. CERTIFICATION VIII. CERTIFICATION I certify under penalty of law that this document and all attachments were prepared under my direction or super system designed to assure that qualified persons directly responsible for gathering the information, the information my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting the possibility of line and imprisonment for knowing violations. A. Name & Official Title Michael L. Menne, Vice President - Environmental Services	vision in accordance with a n my inquiry of the person or n submitted is to the best of g false information, including B. Phone No. (area code & no.) 314-554-2816

Page 2 of 2

VII. Discharge i	nformation (Co	ntinued from page	3 of Form 2F		1	Approval expires 5-31-9
***		40				
Part A – You must	provide the results of	at least one analysis for	every pollutant in t	his table. Complete one t	able for each o	utfall. See instructions for additional details.
		um Values ide units)	(inc	rage Values clude units)	Number	
Pollutant and	Grab Sample Taken During		Grab Sample		of Storm	
CAS Number	First 20	Flow-Weighted	Taken During First 20	Flow-Weighted	Events	
(if available)	Minutes	Composite	Minutes	Composite	Sampled	Sources of Pollutants
Dil and Grease	<10 mg/L	N/A		·	1	Coal, coal ash
Biological Oxygen Demand (BOD5)	<4 mg/L	<4 mg/L		i.	1	Coal, coal ash
Chemical Oxygen Demand (COD)	67 mg/L	35 mg/L			1	Coal, coal ash
Total Suspended Solids (TSS)	150 mg/L	180 mg/L			1	Coal, coal ash, natural sources
Total Nitrogen	1.7 mg/L	l.4 mg/L			1	Coal, coal ash, natural sources
Total Phosphorus	0.17 mg/L	0.16 mg/L			1	Coal, coal ash, natural sources
ъН	Minimum 7.05	Maximum 7.05	Minimum	Maximum	1	Coal, coal ash
waster	ements.	s operating under an exi	deline which the f sting NPDES perr	acility is subject to or an nit). Complete one table	y pollutant liste for each outfa	ed in the facility's NPDES permit for its proces II. See the instructions for additional details an
		um Values <i>ide units)</i>		rage Values clude units)	Number	
Pollutant	Grab Sample		Grab Sample		of	
and	Taken During		Taken During		Storm	
CAS Number (if available)	First 20 Minutes	Flow-Weighted Composite	First 20 Minutes	Flow-Weighted Composite	Events Sampled	Sources of Pollutants
otal Dissolved	740 mg/L	810 mg/L	830 mg/L	840 mg/L	1,3	· · · · · · · · · · · · · · · · · · ·
Solids (TDS)			550 mg/1	040 mg/L	1,3	Coal, coal ash, natural sources
Joron	1.7 mg/L	2 0	2.2 /7	0.0 - /-		
		2.0 mg/L	2.3 mg/L	2.2 mg/L	1,3	Coal, coal ash
langanese	0.14 mg/L	0.16 mg/L	0.30 mg/L	0.24 mg/L	1,3	Coal, coal ash, natural sources
Iron	2.5 mg/L	4.1 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
		-				
					-	

EPA Form 3510-2F (1-92)

Outfall 008

		m Values <i>le units)</i>		rage Values clude units)	N	umber		
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	S E	of Storm vents impled	Sou	rces of Pollutants
ulfate	250 mg/L	420 mg/L	380 mg/L	420 mg/L	1	1,3	Coal, coal as	h, natural sources
esticides	no detect	no dedect				1	Herrbicide con	ntrol
			1					
				· · · · · · · · · · · · · · · · · · ·	1			
		····						
				·······				
					1		-	
					1		-	
				······································				
					+			
					-			
					1			
								·
				······································				
art D – Pr	ovide data for the sto	orm event(s) which res	ulted in the maxim	um values for the flow we	eighted	composite		
1.	2.	3.		4. Number of hours betv	/een	Mavimu	5. m flow rate during	6.
Date of	Duration	Total ra		beginning of storm mea	sured		rain event	Total flow from
Storm Event	of Storm Event (in minutes)	during stor (in inci		and end of previou measurable rain eve			lons/minute or pecify units)	rain event (gallons or specify units
3/02/2012	720	0.1		>72				
, 02, 2012	/20	0.	0	>72		15 9	gpm, average	21,600 gallons
7. Provide a	description of the m	ethod of flow measure	ment or estimate					

.

VII. Discharge information (Continued from page 3 of Form 2F) Part A - You must provide the results of at least one analysis for every pollutant in this table. Complete one table for each outfall. See instructions for additional details. Maximum Values Average Values (include units) (include units) Number Pollutant Grab Sample Grab Sample of and Taken During Taken During Storm CAS Number First 20 Flow-Weighted First 20 Flow-Weighted Events (if available) Minutes Composite Minutes Composite Sampled Sources of Pollutants Oil and Grease <10 mg/L N/A 1 Coal, coal ash Biological Oxygen <4 mg/L <4 mg/L1 Demand (BOD5) Coal, coal ash Chemical Oxygen 42 mg/L 54 mg/L Demand (COD) 1 Coal, coal ash Total Suspended 39 mg/L 15 mg/L Solids (TSS) 1 Coal, coal ash, natural sources Total Nitrogen 1.4 mg/L 1.6 mg/L 1 Coal, coal ash, natural sources Total Phosphorus 0.16 mg/L 0.15 mg/L 1 Coal, coal ash, natural sources Minimum pН 6.97 Maximum 6.97 Minimum Maximum Coal, coal ash 1 List each pollutant that is limited in an effluent guideline which the facility is subject to or any pollutant listed in the facility's NPDES permit for its process Part B – wastewater (if the facility is operating under an existing NPDES permit). Complete one table for each outfall. See the instructions for additional details and requirements. Maximum Values Average Values (include units) (include units) Number Pollutant Grab Sample Grab Sample of and Taken During Taken During Storm CAS Number Flow-Weighted First 20 First 20 Flow-Weighted Events (if available) Minutes Composite Minutes Composite Sampled Sources of Pollutants Total Dissolved 660 mg/L 620 mg/L 990 mg/L 1020 mg/L 1,3 Coal, coal ash, natural sources Solids (TDS) Boron 0.27 mg/L 0.28 mg/L 0.40 mg/L 0.5 mg/L 1,3 Coal, coal ash 0.27 mg/L Manganese 0.97 mg/L 1.8 mg/L 2.8 mg/L 1,3 Coal, coal ash, natural sources Iron 1.0 mg/L 1.2 mg/L 1 Coal, coal ash, natural sources PCBs <0.005 mg/L <0.005 mg/L Steam electric effluent guidelines 1

EPA Form 3510-2F (1-92)

Continued from the Front

Outfall 009

Part C - List req	each pollutant shov uirements. Complete	vn in Table 2F-2, 2F-3, e one table for each out	and 2F-4 that yo fall.	u know or have reason to	believ	e is presen	t. See the instruct	ions for additional details and
		ım Values de units)		rage Values clude units)	N	umber		
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	S E	of Storm Events Ampled	Sou	irces of Pollutants
Sulfate	400 mg/L	400 mg/L	610 mg/L	590 mg/L	:	1,3	Coal, coal as	h, natural sources
Pesticides	no detect	no dedect				1	Herrbicide co	
							······································	
		-						
		····						
	····						(· ····································
Part D – Pr	ovide data for the sto	orm event(s) which resu	Ited in the maxim	um values for the flow we	eighted	composite	sample. 5.	
1. Date of Storm Event	2. Duration of Storm Event <i>(in minutes)</i>	3. Total rai during storn <i>(in inch</i>	n event	Number of hours betw beginning of storm mea and end of previou measurable rain eve	sured	ra (gallo	5. I flow rate during ain event ns/minute or ecify units)	6. Total flow from rain event (gallons or specify units)

7. Provide a description of the method of flow measurement or estimate.

0.70

V-notch weir height measurement, standard conversion calculation to obtain flowrate. Total flow calculated based on drainage area, precipitation, and estimated runoff coefficient.

>72

7.5 gpm, average

3/02/2012

720

10,800 gallons

EPA ID Number (copy from Item 1 of Form 1) IL0000108

VII. Discharge information (Continued from page 3 of Form 2F)

		um Values ide units)		erage Values		
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted	Grab Sample Taken During First 20	<i>clude units)</i> Flow-Weighted	Number of Storm Events Sampled	
Dil and Grease	<10 mg/L	Composite N/A	Minutes	Composite	1 Sampled	Sources of Pollutants
Biological Oxygen	<4 mg/L	<4 mg/L				Coal, coal ash
Demand (BOD5) Chemical Oxygen					1	Coal, coal ash
emand (COD) otal Suspended	42 mg/L	54 mg/L			1	Coal, coal ash
Solids (TSS)	39 mg/L	15 mg/L			1	Coal, coal ash, natural sources
otal Nitrogen	1.4 mg/L	1.6 mg/L			1	Coal, coal ash, natural sources
otal Phosphorus	0.15 mg/L	0.16 mg/L			1	Coal, coal ash, natural sources
н			Minimum	Maximum	1	Coal, coal ash
waster	mater (if the facility is ements. Maxim	Imited in an effluent guid operating under an exis um Values Ide units)	Ave	acility is subject to or an mit). Complete one table grage Values clude units)	y pollutant liste for each outfa Number	ed in the facility's NPDES permit for its proces II. See the instructions for additional details ar
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
otal Dissolved	660 mg/L	620 mg/L	970 mg/L	1000 mg/L	1,3	Coal, coal ash, natural sources
Solids (TDS)						
oron	0.27 mg/L	0.28 mg/L	0.41 mg/L	0.40 mg/L	1,3	Coal, coal ash
langanese	0.27 mg/L	0.97 mg/L	1.1 mg/L	2.1 mg/L	1,3	Coal, coal ash, natural sources
ron	1.0 mg/L	1.2 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines

EPA Form 3510-2F (1-92)

Continued from the Front

Outfall 010

		ım Values de units)		rage Values clude units)	N	umber		
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	S E	of Storm Events ampled	Sour	ces of Pollutants
ulfate	400 mg/L	400 mg/L	540 mg/L	540 mg/L	-	1,3	Coal, coal ash	, natural sources
esticides	no detect	no dedect				1	Herrbicide con	itrol
					1			
					1			
				·				
				······				
					1		-	
					1			
					1			
					1			
					1			
					-			
			1					
		1						
art D - Pr	ovide data for the sto	orm event(s) which res	ulted in the maxim	um values for the flow we	eighted	composit		
1.	2.	3.		4. Number of hours betw	(007	Maximu	5. m flow rate during	6.
Date of	Duration	Total ra		beginning of storm mea	sured		rain event	Total flow from
Storm Event	of Storm Event (in minutes)	during stor (in inci		and end of previou measurable rain eve			lons/minute or	rain event
					3HL		pecify units)	(gallons or specify units
3/02/2012	720	0.76)	>72			applicable pelow comment)	2,700 gallons
		ethod of flow measure					····	

V-notch weir height measurement, standard conversion calculation to obtain flowrate. Total flow calculated based on drainage area, precipitation, and estimated runoff coefficient.

Outfall 009 parameters substituted for this Outfall (010) except average values and calculated total flow from rain event, per IEPA approval.

EPA ID Number (copy from Item 1 of Form 1) IL0000108

VII. Discharge information (Continued from page 3 of Form 2F)

Part A – You must	provide the results of	at least one analysis for e	every pollutant in	this table. Complete one t	able for each o	utfall. See instructions for additional details.
	Maxim	um Values ide units)	Ave	erage Values clude units)	Number	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Oil and Grease	<10 mg/L	N/A			1	Coal, coal ash
Biological Oxygen Demand (BOD5)	<4 mg/L	<4 mg/L			1	Coal, coal ash
Chemical Oxygen Demand (COD)	42 mg/L	54 mg/L			1	Coal, coal ash
Total Suspended Solids (TSS)	39 mg/L	15 mg/L			l	Coal, coal ash, natural sources
Total Nitrogen	1.4 mg/L	1.6 mg/L			1	Coal, coal ash, natural sources
Total Phosphorus	0.15 mg/L	0.16 mg/L			1	Coal, coal ash, natural sources
рН			Minimum	Maximum	1	Coal, coal ash
waste	ach pollutant that is I water (if the facility is ements.	imited in an effluent guid s operating under an exis	teline which the t sting NPDES per	facility is subject to or an mit). Complete one table	y pollutant liste for each outfal	ed in the facility's NPDES permit for its process II. See the instructions for additional details and
Pollutant and		um Values ide units)		erage Values aclude units)	Number of Storm	
CAS Number (if available)	First 20 Minutes	Flow-Weighted Composite	First 20 Minutes	Flow-Weighted Composite	Events Sampled	Sources of Pollutants
Total Dissolved	660 mg/L	620 mg/L			1	Coal, coal ash, natural sources
Solids (TDS)						
Boron	0.27 mg/L	0.28 mg/L			1	Coal, coal ash
Manganese	0.27 mg/L	0.97 mg/L			1	Coal, coal ash, natural sources
Iron	1.0 mg/L	1.2 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
						· · · · · · · · · · · · · · · · · · ·
			_			
	<u> </u>					

Continued from the Front

	Maxim (inclu	um Values de units)	Ave	rage Values clude units)		l		······
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite		lumber of Storm Events ampled	Sou	urces of Pollutants
ulfate	400 mg/L	400 mg/L				1	Coal, coal as	sh, natural sources
esticides	no detect	no dedect				1	Herbicide con	
		-						
					1			
					1			
					1			
		******			+			
						-		
		·						
					 			
								· · · · · · · · · · · · · · · · · · ·
					ļ			
					ļ			······································
					ļ			
					ļ			
								······································
rt D – Pro	ovide data for the sto	rm event(s) which resu	Ilted in the maxim	im values for the flow we	ighted	omnosito		
				4.	gnteu	composite	5.	
1. Date of	2. Duration	3.	- (- II	Number of hours betwe		Maximun	n flow rate during	6.
Storm	of Storm Event	Total raii during storn		beginning of storm meas and end of previous		r	ain event ons/minute or	Total flow from
Event	(in minutes)	(in inch		measurable rain eve			ecify units)	rain event (gallons or specify units)
/02/2012	720	0.70		>72		Not	applicable	2,700 gallons
						(see b	elow comment)	
. Provide a	description of the me	thod of flow measuren	nent or estimate					
notch wei:	r height measure	ement, standard o	onversion sal	culation to obtain	f10***	ate m	tal flor 1	lated based on drain
a, preci	pitation, and es	stimated runoff c	oefficient.	co obtaili	~ ~ UWI	ule. To	Juan LIOW Calcu	itated based on drair

Outfall 012

EPA ID Number (copy from Item 1 of Form 1) IL0000108

VII. Discharge information (Continued from page 3 of Form 2F)

	Maxim	um Values	Ave	rage Values		
Pollutant and CAS Number <i>(if available)</i>		rde units) Flow-Weighted Composite		Flow-Weighted Composite	Number of Storm Events Sampled	Sources of Pollutants
Oil and Grease	<10 mg/L	N/A		0011100110	1	Coal, coal ash
Biological Oxygen Demand (BOD5)	<4 mg/L	<4 mg/L			1	Coal, coal ash
Chemical Oxygen Demand (COD)	42 mg/L	54 mg/L			1	Coal, coal ash
Fotal Suspended Solids (TSS)	39 mg/L	15 mg/L			1	Coal, coal ash, natural sources
Total Nitrogen	1.4 mg/L	1.6 mg/L			l	Coal, coal ash, natural sources
Fotal Phosphorus	0.15 mg/L	0.16 mg/L			1	Coal, coal ash, natural sources
рН	Minimum 6.97	Maximum 6.97	Minimum	Maximum	1	Coal, coal ash
wastev	water (if the facility is ements.	imited in an effluent guic operating under an exis um Values	sting NPDES per	acility is subject to or ar mit). Complete one table grage Values	y pollutant liste for each outfa	ed in the facility's NPDES permit for its process II. See the instructions for additional details and
Pollutant and CAS Number <i>(if available)</i>	<i>(inclu)</i> Grab Sample Taken During First 20 Minutes	ide units) Flow-Weighted Composite		clude units) Flow-Weighted Composite	Number of Storm Events Sampled	Sources of Pollutants
Total Dissolved	660 mg/L	620 mg/L	340 mg/L	330 mg/L	1,3	Coal, coal ash, natural sources
Solids (TDS)						
oron	0.27 mg/L	0.28 mg/L	0.22 mg/L	0.22 mg/L	1,3	Coal, coal ash
langanese	0.27 mg/L	0.97 mg/L	0.12 mg/L	0.34 mg/L	1,3	Coal, coal ash, natural sources
Iron	1.0 mg/L	1.2 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
					·	
49444-944-944-						

EPA Form 3510-2F (1-92)

Continued from the Front

Outfall 012

	(inclu	um Values de units)	Ave (inc	rage Values clude units)	N N	umber		
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite		of Storm Events ampled	Sou	irces of Pollutants
ulfate	400 mg/L	400 mg/L	150 mg/L	150 mg/L		1,3	Coal, coal as	h, natural sources
esticides	no detect	no dedect				1	Herbicide con	trol
					1			
							1	
					1			
							-	
					<u> </u>		1	
				······································				
		· · · · · ·						
		······································						·····
					<u> </u>			
				<u></u>			1	
				anna ann ann an ann an ann an ann an an				
	· · · · · · · · · · · · · · · · · · ·							
				······				
					<u> </u>			
					1			
art D - Pr	ovide data for the sto	orm event(s) which res	ulted in the maximu	m values for the flow we	ighted o	composite	sample.	
1.	2.	3.		4.			5.	
Date of	Duration	Total rai	nfall	Number of hours betw beginning of storm measured			n flow rate during ain event	6. Total flow from
Storm Event	of Storm Event	during storr	n event	and end of previous	s	(gall	ons/minute or	Total flow from rain event
	(in minutes)	(in inch		measurable rain eve	nt	sp	ecify units)	(gallons or specify units
/02/2012	720	0.70		>72			applicable	17,000 gallons
						1266 D	elow comment)	
7 Provide e	description of the ma	ethod of flow measurer	l					

Outfall 009 parameters substituted for this Outfall (012) except average values and calculated total flow from rain event, per IEPA approval.

٦

VII. Discharge i	nformation (Co	ntinued from page	3 of Form 2	5)		
Part A – You must			1		table for each o	utfall. See instructions for additional details.
Pollutant		um Values ide units)	(in	rage Values <i>clude units)</i>	Number	
and CAS Number <i>(if available)</i>	Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Storm Events Sampled	Sources of Pollutants
Oil and Grease	<10 mg/L	N/A			1	Coal, coal ash
Biological Oxygen Demand (BOD5)	<4 mg/L	<4 mg/L			1	Coal, coal ash
Chemical Oxygen Demand (COD)	40 mg/L	66 mg/L			1	Coal, coal ash
Fotal Suspended Solids (TSS)	77 mg/L	150 mg/L			1	Coal, coal ash, natural sources
Total Nitrogen	1.3 mg/L	1.8 mg/L			1	Coal, coal ash, natural sources
rotal Phosphorus	0.22 mg/L	0.34 mg/L			1	Coal, coal ash, natural sources
рН	Minimum 6.44	Maximum 6.44	Minimum	Maximum	1	Coal, coal ash
waster	water (if the facility is ements.	imited in an effluent guid operating under an exis 	sting NPDES per	mit). Complete one table	ny pollutant liste e for each outfa	ed in the facility's NPDES permit for its process II. See the instructions for additional details and
Dellaster	(inclu	ide units)	(in	erage Values clude units)	Number	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Total Dissolved	260 mg/L	240 mg/L			1	Coal, coal ash, natural sources
Solids (TDS)					-	
Boron	0.09 mg/L	0.09 mg/L			1	Coal, coal ash
langanese	0.13 mg/L	0.26 mg/L			1	Coal, coal ash, natural sources
ron	1.2 mg/L	4.5 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
					-	

EPA Form 3510-2F (1-92)

Continued from the Front

Outfall 013

	(inclu	um Values de units)	Aver (inc	age Values lude units)	Numb	er	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storr Even Sampl	n ts	urces of Pollutants
Sulfate	110 mg/L	50 mg/L			1	Coal, coal as	h, natural sources
Pesticides	no detect	no dedect			1	Herbicide cor	itrol
				······			
				· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·					
							······································
Part D – Pro	ovide data for the st	orm event(s) which res	ulted in the maximu	m values for the flow we	ighted com	posite sample.	
1.	2.	3.	τ	4. Number of hours betw		5. aximum flow rate during	6.

1. Date of Storm Event	2. Duration of Storm Event <i>(in minut</i> es)	3. Total rainfall during storm event <i>(in inches)</i>	4. Number of hours between beginning of storm measured and end of previous measurable rain event	5. Maximum flow rate during rain event (gallons/minute or specify units)	6. Total flow from rain event (gallons or specify units)
3/02/2012	720	0.70	>72	7.5, average	10,800 gallons

7. Provide a description of the method of flow measurement or estimate.

V-notch weir height measurement, standard conversion calculation to obtain flowrate. Total flow calculated based on drainage area, precipitation, and estimated runoff coefficient.

VII. Discharge information (Continued from page 3 of Form 2F)

		um Values de units)		erage Values <i>clude units)</i>	Number	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Dil and Grease	<10 mg/L	N/A			1	Coal, coal ash
Biological Oxygen Demand (BOD5)	<4 mg/L	<4 mg/L			1	Coal, coal ash
Chemical Oxygen Demand (COD)	40 mg/L	66 mg/L			1	Coal, coal ash
otal Suspended Solids (TSS)	77 mg/L	150 mg/L			1	Coal, coal ash, natural sources
otal Nitrogen	1.3 mg/L	1.8 mg/L			1	Coal, coal ash, natural sources
otal Phosphorus	0.22 mg/L	0.34 mg/L			1	Coal, coal ash, natural sources
н	Minimum 6.44	Maximum 6.44	Minimum	Maximum	1	Coal, coal ash
wastev require Pollutant	water (if the facility is ements. Maxim <i>(inclu</i> Grab Sample	um Values de units)	sting NPDES per Ave (in Grab Sample	actifity is subject to or a mit). Complete one table one table one table one table one table of the table of table one table of table one table of table one	e for each outfa Number of	ed in the facility's NPDES permit for its proces II. See the instructions for additional details ar
and CAS Number <i>(if available)</i>	Taken During First 20 Minutes	Flow-Weighted Composite	Taken During First 20 Minutes	Flow-Weighted Composite	Storm Events Sampled	Sources of Pollutants
Cotal Dissolved	260 mg/L	240 mg/L			1	Coal, coal ash, natural sources
Solids (TDS)					····	
oron	0.09 mg/L	0.09 mg/L			1	Coal, coal ash
langanese	0.13 mg/L	0.26 mg/L			1	Coal, coal ash, natural sources
Iron	1.2 mg/L	4.5 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
·····						······································
-				,		

Continued from the Front

Outfall 014

		ım Values de units)	Aver (inc	rage Values clude units)	N	umber			
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite		of Storm Events ampled	Sou	rces of Pollutants	
ulfate	110 mg/L	50 mg/L				1	Coal, coal as	ash, natural sources	
esticides	no detect	no dedect				1	Herbicide con	trol	
				·····					
					<u> </u>				
					ļ				
					ļ				
					<u> </u>				
					ļ				
								· · · · · · · · · · · · · · · · · · ·	
								······	
		·····							
				· · · · · · · · · · · · · · · · · · ·					
1				· · · · · · · · · · · · · · · · · · ·	1				
art D - Pro	ovide data for the sto	orm event(s) which res	ulted in the maxim	um values for the flow we	ighted	composite	e sample.		
1.	2.	3.		4.			5.	c	
Date of	Duration	Total ra	infall	Number of hours betw beginning of storm mea			m flow rate during rain event	6. Total flow from	
Storm Event	of Storm Event (in minutes)	during stor (in incl		and end of previous	s	(gal	ons/minute or	rain event	
3/02/2012				measurable rain eve			pecify units)	(gallons or specify units,	
,, 02/2012	720	0.70)	>72		Not a (see h	applicable pelow comment)	13,100 gallons	

V-notch weir height measurement, standard conversion calculation to obtain flowrate. Total flow calculated based on drainage area, precipitation, and estimated runoff coefficient.

Outfall 013 parameters substituted for this Outfall (014) except calculated total flow from rain event, per IEPA approval.

VII. Discharge i	nformation (Co	ntinued from page	3 of Form 2P	5		
Part A – You must	provide the results of	at least one analysis for e	every pollutant in t	his table. Complete one t	able for each o	utfall. See instructions for additional details.
Pollutant and CAS Number <i>(if available</i>)	Maxim	um Values ide units) Flow-Weighted Composite	Ave	rage Values <i>clude units)</i> Flow-Weighted Composite	Number of Storm Events Sampled	Sources of Pollutants
Oil and Grease	<10 mg/L	N/A	Williados	Composite	1	Coal, coal ash
Biological Oxygen	-					
Demand (BOD5) Chemical Oxygen	<4 mg/L	<4 mg/L			1	Coal, coal ash
Demand (COD)	40 mg/L	66 mg/L			1	Coal, coal ash
Total Suspended Solids (TSS)	77 mg/L	150 mg/L			1	Coal, coal ash, natural sources
Total Nitrogen	1.3 mg/L	1.8 mg/L			1	Coal, coal ash, natural sources
Total Phosphorus	0.22 mg/L	0.34 mg/L			1	Coal, coal ash, natural sources
pН			Minimum	Maximum	1	Coal, coal ash
waster	water (if the facility is ements.	s operating under an exit	sting NPDES per	mit). Complete one table	ny pollutant liste for each outfa	ed in the facility's NPDES permit for its process II. See the instructions for additional details and
		um Values <i>ide units)</i>		erage Values clude units)	Number	
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	of Storm Events Sampled	Sources of Pollutants
Total Dissolved	260 mg/L	240 mg/L		· · · · · · · · · · · · · · · · · · ·	1.	Coal, coal ash, natural sources
Solids (TDS)						
Boron	0.09 mg/L	0.09 mg/L			1	Coal, coal ash
Manganese	0.13 mg/L	0.26 mg/L			1	Coal, coal ash, natural sources
Iron PCBs	1.2 mg/L <0.005 mg/L	4.5 mg/L <0.005 mg/L	4		1	Coal, coal ash, natural sources
					1	Steam electric effluent guidelines

EPA Form 3510-2F (1-92)

Continued from the Front

Outfall 015

		ım Values de units)		rage Values clude units)	N N	lumber		
Pollutant and CAS Number (if available)	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	E	of Storm Events ampled	Sou	rces of Pollutants
lfate	110 mg/L	50 mg/L				1	Coal, coal as	n, natural sources
sticides	no detect	no dedect				1	Herbicide cont	crol
								· · · · · · · · · · · · · · · · · · ·
							-	
			•		-			
		· · · · · · · · · · · · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·
							_	
		······································						
				· · · · · · · · · · · · · · · · · · ·				
					_			
rt D – Pro	ovide data for the sto	orm event(s) which res	ulted in the maxim	um values for the flow we	iabtod	aamaaait		
				4.	igineu		5.	
1. Data af	2.	3.		Number of hours betw		Maximu	m flow rate during	6.
Date of Storm	Duration of Storm Event	Total rai during stori		beginning of storm mea and end of previou			rain event	Total flow from
Event	(in minutes)	(in inch		measurable rain eve			pecify units)	rain event (gallons or specify units
/02/2012	720	0.70	H	>72		Not a	pplicable	9,000 gallons
						(see b	pelow comment)	s, see garrons
					••••			······
'. Provide a	description of the m	ethod of flow measure	ment or estimate.					

Outfall 013 parameters substituted for this Outfall (015) except calculated total flow from rain event, per IEPA approval.

		<u></u>	1000			Approval expires 5-31-92
VII. Discharge i	nformation (Co	ntinued from page	3 of Form 2	5)		
Part A - You must r	provide the results of	at least one analysis for	even/ pollutant in t	this table Complete are t	able for a	utfall. See instructions for additional details.
raitA = Tou must		um Values		rage Values	able for each of	utfall. See instructions for additional details.
		ide units)		clude units)	Number	
Pollutant and	Grab Sample Taken During		Grab Sample		of Storm	
CAS Number	First 20	Flow-Weighted	Taken During First 20	Flow-Weighted	Events	
(if available)	Minutes	Composite	Minutes	Composite	Sampled	Sources of Pollutants
Oil and Grease	<8 mg/L	N/A			1	Coal, coal ash
Biological Oxygen Demand (BOD5)	5 mg/L	7 mg/L		<u> </u>	1	Coal, coal ash
Chemical Oxygen Demand (COD)	12 mg/L	10 mg/L			1	Coal, coal ash
Total Suspended Solids (TSS)	21 mg/L	18 mg/L			1	Coal, coal ash, natural sources
Total Nitrogen	<1.0 mg/L	<1.0 mg/L			1	Coal, coal ash, natural sources
Total Phosphorus	0.10 mg/L	<0.10 mg/L			1	Coal, coal ash, natural sources
			Minimum	Maximum	1	Coal, coal ash
wastev	ach pollutant that is i water (if the facility is ements.	imited in an effluent guid s operating under an exis	deline which the f sting NPDES per	acility is subject to or ar mit). Complete one table	y pollutant liste for each outfa	ed in the facility's NPDES permit for its process II. See the instructions for additional details and
		um Values ude units)		erage Values oclude units)	Number	
Pollutant and	Grab Sample		Grab Sample		of	
and CAS Number	Taken During First 20	Flow-Weighted	Taken During First 20	Flow-Weighted	Storm Events	
(if available)	Minutes	Composite	Minutes	Composite	Sampled	Sources of Pollutants
otal Dissolved	540 mg/L	540 mg/L			1	Coal, coal ash, natural sources
Solids (TDS)					1	
Boron	0.23 mg/L	0.30 mg/L	1		1	Coal, coal ash
langanese	0.10 mg/L	0.09 mg/L			1	Coal, coal ash, natural sources
Iron	0.53 mg/L	0.55 mg/L			1	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
						Steam erectric criticate guidermes
						-
			1			
	[-			
		-	-	-		
			1	1		

Continue on Reverse

Continued from the Front

Outfall 016

	Maximu	e one table for each ou um Values de units)	Ave	rage Values	<u> </u>			· · · · · · · · · · · · · · · · · · ·
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	(Inc Grab Sample Taken During First 20 Minutes	clude units) Flow-Weighted Composite		lumber of Storm Events ampled	Sou	urces of Pollutants
Sulfate	180 mg/L	170 mg/L				1	Coal, coal as	h, natural sources
Pesticides	no detect	no dedect				1	Herbicide con	itrol
					1			
	·			······································			-	
				-				
					-			
	-							
						····		·····
	······································							
		1	<u> </u>					
Part D - Pro	ovide data for the sto	orm event(s) which res	ulted in the maxim	um values for the flow we	eighted	composite	e sample.	
1.	2.			4.			5.	
Date of	Z. Duration	3. Total rai	nfall	Number of hours betw beginning of storm mea			m flow rate during rain event	6. Tatal flavu farm
Storm	of Storm Event	during storr	n event	and end of previou	s		ons/minute or	Total flow from rain event
Event	(in minutes)	(in inch	es)	measurable rain eve	ent		ecify units)	(gallons or specify units)
3/08/2012	180	0.40		>72		1	5 gpm	3,600 gallons
]		<u> </u>		<u> </u>		
V-notch wei area, preci	r height measur	ement, standard o	conversion cal	culation to obtain	flow	rate. 1	otal flow calc	ulated based on draina
proor	preserver, and e	SSETWACEA IMIOIT (Socrificient.					
V-notch wei	r height measur	ethod of flow measurer rement, standard o estimated runoff o	conversion cal	culation to obtain	flow	rate. 1	otal flow calc	rulated based

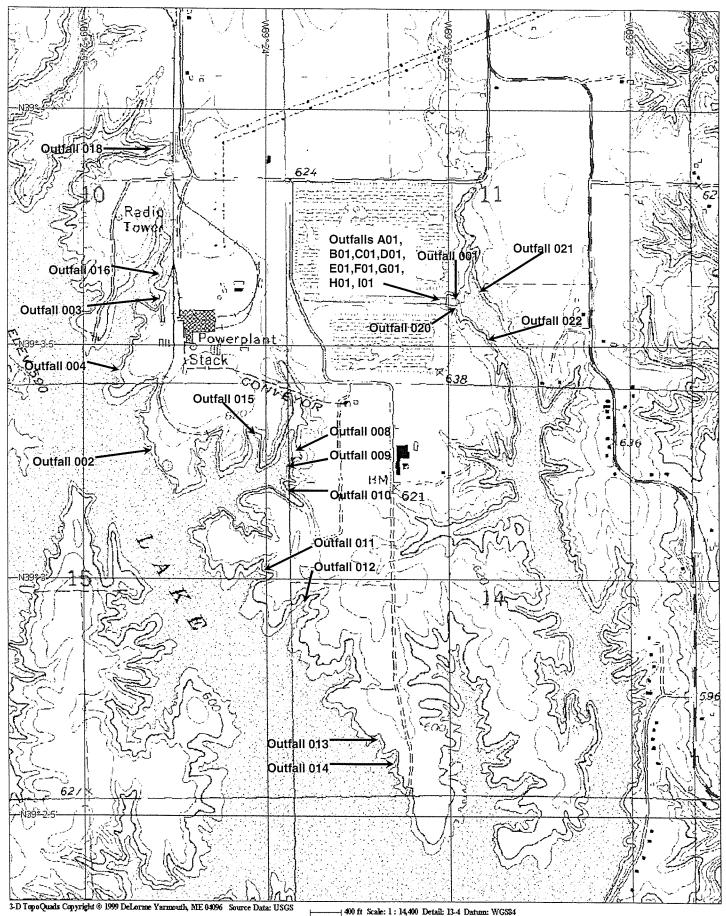
Outrall 018			ILOOO			Approval expires 5-31-9
VII. Discharge i	information (Co	ntinued from page	3 of Form 2F	5		
Part A – You must	provide the results of	at least one analysis for (every pollutant in t	his table. Complete one ta	ble for each o	utfall. See instructions for additional details.
	Maxim (inclu	um Values ide units)	Ave	rage Values clude units)	Number	
Pollutant and	Grab Sample		Grab Sample		of	
CAS Number	Taken During First 20	Flow-Weighted	Taken During First 20	Flow-Weighted	Storm Events	
(if available)	Minutes	Composite	Minutes	Composite	Sampled	Sources of Pollutants
Oil and Grease	<17 mg/L	N/A			1	Coal, coal ash
Biological Oxygen Demand (BOD5)	<4 mg/L	<4 mg/L			1	Coal, coal ash
Chemical Oxygen Demand (COD)	16 mg/L	14 mg/L			1	Coal, coal ash
Total Suspended Solids (TSS)	6.4 mg/L	<4 mg/L	5.6 mg/L	NA	1,10	Coal, coal ash, natural sources
Total Nitrogen	1.0 mg/L	<1 mg/L			1	Coal, coal ash, natural sources
Total Phosphorus	<0.10 mg/L	<0.10 mg/L	0.07 mg/L		1,6	Coal, coal ash, natural sources
pH			Minimum 6.74		1,6	Coal, coal ash
waster	mater (if the facility is ements.	um Values	sting NPDES perr	acility is subject to or any nit). Complete one table grage Values	y pollutant liste for each outfa	ed in the facility's NPDES permit for its process II. See the instructions for additional details and
Deflect		ide units)	(in	clude units)	Number	
Pollutant and	Grab Sample		Grab Sample		of	
CAS Number	Taken During First 20	Flow-Weighted	Taken During First 20	Flow Moinhted	Storm Events	
(if available)	Minutes	Composite	Minutes	Flow-Weighted Composite	Sampled	Sources of Pollutants
otal Dissolved	170 mg/L	230 mg/L			1	Coal, coal ash, natural sources
Solids (TDS)						
Boron	0.05 mg/L	0.05 mg/L	0.05 mg/L	NA	1,11	Coal, coal ash
langanese	<0.10 mg/L	<0.10 mg/L	<0.01 mg/L			
Iron				NA	1,11	Coal, coal ash, natural sources
	0.12 mg/L	0.08 mg/L	0.14 mg/L	NA	1,11	Coal, coal ash, natural sources
PCBs	<0.005 mg/L	<0.005 mg/L			1	Steam electric effluent guidelines
						· ·
					1	
			1			
					+	
	1	1	I	1	1	

EPA Form 3510-2F (1-92)

Continue on Reverse

Continued from the Front

Outfall 018


		ım Values de units)		rage Values clude units)	N	umber		
Pollutant and CAS Number <i>(if available)</i>	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	Grab Sample Taken During First 20 Minutes	Flow-Weighted Composite	S E	of Storm vents mpled	Sou	rces of Pollutants
ulfate	20 mg/L	44 mg/L	15 mg/L	NA		1,11	Coal, coal as	h, natural sources
esticides	no detect	no detect				1	Herbicide con	trol
hloride	5 mg/L	NA	6 mg/L	NA	-	1,10	Coal, coal as	h, natural sources
ercury	<l l<="" ng="" td=""><td>NA</td><td><1 ng/L</td><td>NA</td><td></td><td>1,2</td><td>Coal, coal as</td><td>h, natural sources</td></l>	NA	<1 ng/L	NA		1,2	Coal, coal as	h, natural sources
ead	<10 ug/L	NA	<10 ug/L	NA		1,10	Coal, coal as	h, natural sources
lckel	<5 ug/L	NA	<8 ug/L	NA		1,10	Coal, coal as	h, natural sources
elenium	<5 ug/L	NA	<8 ug/L	NA		1,10	Coal, coal as	h, natural sources
lver	<3 ug/L	NA	<6 ug/L	NA	-	1,10	Coal, coal as	h, natural sources
inc	19 ug/L	NA	<30 ug/L	NA		1,10	Coal, coal as	h, natural sources
rsenic	<20 ug/L	NA	<18 ug/L	NA		1,10	Coal, coal as	h, natural sources
urium	70 ug/L	NA	71 ug/L	NA	:	1,10	Coal, coal as	h, natural sources
admium	<l l<="" td="" ug=""><td>NA</td><td><l l<="" td="" ug=""><td>NA</td><td>-</td><td>1,10</td><td>Coal, coal as</td><td>h, natural sources</td></l></td></l>	NA	<l l<="" td="" ug=""><td>NA</td><td>-</td><td>1,10</td><td>Coal, coal as</td><td>h, natural sources</td></l>	NA	-	1,10	Coal, coal as	h, natural sources
nromium	<4 ug/L	NA	<4 ug/L	NA	-	1,10	Coal, coal as	h, natural sources
nromium+6	<10 ug/L	NA	<6 ug/L	NA	-	1,10	Coal, coal as	h, natural sources
pper	<5 ug/L	NA	<6 ug/L	NA		1,10	Coal, coal as	h, natural sources
vanide	<5 ug/L	NA	<5 ug/L	NA		1,10	Coal, coal as	h, natural sources
ranideWAD	<5 ug/L	NA	<5 ug/L	NA		1,10	Coal, coal as	h, natural sources
luoride	0.33 mg/L	NA	0.32mg/L	NA		1,10	Coal, coal as	h, natural sources
1. Date of Storm	2. Duration of Storm Event	3. Total rai during storr	nfall n event	um values for the flow wei 4. Number of hours betwe beginning of storm meas and end of previous	een sured	Maximur I (gall	5. n flow rate during ain event ons/minute or	6. Total flow from rain event
Event 3/02/2012	(in minutes) 720	(in inch 0.70		measurable rain eve: >72	nt		necify units) 0 gpm	(gallons or specify units) 2,880 gallons

Height of flow in discharge conduit, standard conversion calculation to obtain flowrate and total flow from rain event.

Prior to discharge, a settling basin with treatment for >100-year,24-hour precipitation event is provided. Therefore, composite sample data for those parameters noted as "NA" is not provided for this Outfall (018).

Data for As, Ba, Cd, Cr, Cr+6, Cu, CN, CN (WAD), F-, Pb, Ni, Se, Ag, and Zn are provided in accordance with Special Condition 24 of the current effective NPDES permit.

Ameren Energy Generating Company – Coffeen Power Station NPDES Permit IL0000108 Outfalls Revised 27JULY2012

COFFEEN POWER STATION NPDES PERMIT REAPPLICATION

Attachment Index

Attachment	Description	Page Number
А	Description of Site & Designated Outfalls	2
В	Description of Other Discharges	5
С	Reapplication Sampling and Analysis	6
D	Station Chemical Usage	9
E	Section 311 and Superfund Exemption	13
F	Thermal Limitations, Section 316(a)	14
G	Intake Structure Requirements, Section 316(b)	16
н	Environmental Projects	18
1	Macroinvertebrate Control	19
J	Activities, Materials and Management Practices with Potential to Impact Storm Water Quality	20
K	Significant Leaks or Spills	26
L	Reissued Permit Revision Requests	27

Attachment A Description of Site & Designated Outfalls

General Site Description

The Ameren Energy Generating Company Coffeen Power Station is a 950 MW coal-fired electric generating station that initially commenced operations in 1965. The station is located on Coffeen Lake, approximately three miles south of the town of Coffeen, Montgomery County, Illinois. The plant site encompasses approximately 1,350 acres.

The existing Coffeen Power Station NPDES permit contains 22 designated outfalls; each is described below.

Outfall 001 – Condenser Cooling Water Flume Discharge

This is the discharge from the condenser cooling water flume. Non-contact water used for cooling the condensers and other heat exchangers is combined with other process wastewater streams prior to discharge. Stoplogs were placed at the Outfall 001 discharge structure, resulting in the diversion of the cooling water discharge to Outfall 020. Normally, only minor *de minimis* leakage occurs through the stoplogs. This leakage is estimated once/week by Station staff and reported to the Agency.

Outfall 020 – Condenser Cooling Water Diversion Channel Overflow

This is the discharge from the condenser cooling water flume. Non-contact water used for cooling the condensers and other heat exchangers is combined with other process wastewater streams prior to discharge. Discharge is to Coffeen Lake and this outfall is considered to be a process wastestream.

<u>Outfall 021 – Condenser Cooling Water Supplemental Cooling Pond</u> <u>Overflow</u>

This is the discharge from the supplemental perched cooling pond. Water from the condenser cooling water flume is pumped to the pond as necessary to comply with mixing zone temperature limitations. Discharge is to Coffeen Lake.

<u>Outfall 022 – Condenser Cooling Water Supplemental Cooling Tower</u> <u>Discharge</u>

This discharge is from the permanent supplemental cooling towers. Water from the condenser cooling water flume is pumped to the mechanical draft cooling towers as necessary to comply with mixing zone temperature limitations. Discharge is to Coffeen Lake.

Outfall A01 – Boiler Draining Wastewater

This is the discharge from the periodic draining of the Unit 1 and 2 boilers. This wastestream consists of high-purity demineralized water with dilute aqueous ammonia to maintain a pH within the range of 8.2-8.6 during normal operations. Occasionally, the boilers are drained through this outfall to perform maintenance activities. Discharge is to the Station cooling water flume. This outfall is considered to be a process wastestream.

<u>Outfall B01 – Raw Water Treatment and Demineralizer Regenerant</u> <u>Wastes</u>

This outfall is comprised of wastewater from the Station raw water treatment system (microfiltration and reverse osmosis) and demineralizer regeneration. Prior to discharge, these wastestreams are routed to an equalization tank. Discharge is to the Station cooling water flume. Outfall B01 is considered to be a process wastestream.

Outfall C01 – Unit 1 Floor Drains and Sumps

This is the discharge from the oil/water separator that serves the Unit 1 floor and equipment drains and sumps; including storm water (roof and yard drains) associated with industrial activity. This discharge is normally routed to the Recycle Pond. Alternatively, the discharge may be routed to the Station cooling water flume via Outfall C01. Excluding storm water, this outfall is considered to be a process wastestream.

Outfall D01 – Sewage Treatment Plant Discharge

This is the discharge from the Station package sewage treatment plant that features an Imhoff tank, trickling filter, and sand filter. The sewage treatment plant primarily receives sanitary wastes from Station restrooms and lunch facilities. Minor amounts of wastewater from the Station chemical laboratory is also received by this sewage treatment plant. Treated sanitary sewage effluent is discharged into the Station cooling water flume. This discharge is considered to be a non-process wastestream.

Outfall E01 – Unit 2 Floor Drains and Sumps

This is the discharge from the oil/water separator that serves the Unit 2 floor and equipment drains and sumps; including storm water (roof and yard drains) associated with industrial activity. This discharge is normally routed to the Recycle Pond. Alternatively, the discharge may be routed to the Station cooling water flume via Outfall E01. Excluding storm water, this outfall is considered to be a process wastestream.

Outfall F01 – Maintenance Shop Oil/Water Separator

This is the discharge from the maintenance shop oil/water separator. This outfall is designated by the Agency as Outfall F01 with no requirements for monitoring. The Station utilizes Best Management Practices, including routine visual inspections. Discharge of the maintenance shop oil/water separator is to the Station cooling water flume.

R 189

Outfall G01 – Equalization Tank Bypass Line Discharge

This is the discharge from the same wastewater sources as Outfall B01. As conditions dictate, the equalization tank is removed from service for maintenance of the tank. The Station has committed to restricting the equalization tank bypass (and subsequent discharge via Outfall G01) to the minimum amount of time necessary to perform equalization tank maintenance. Discharge during periods of equalization tank bypass is to the Station cooling water flume. This outfall is considered to be a process wastestream.

Outfalls H01 & I01 – Storm Water from the Closed Ash Pond

These are designated outfalls that would discharge storm water during major maintenance activities of the closed ash pond cap requiring strategic cuts into the pond berm. Discharge is to the cooling water discharge flume. These outfalls are not yet constructed and therefore are not functional.

Outfall 002 - Coal Yard Settling Pond Discharge

The Station Coal Yard Settling Pond receives storm water runoff from the coal yard, low volume wastestreams, limestone runoff pond overflow, and plant yard drains. The pond was designed to contain a 10-year 24-hour storm event for treatment. Periodically, coal is recovered from the pond and placed on the coal pile for combustion in the Station boilers. Discharge is to Coffeen Lake. This outfall is considered to be a process wastestream, excluding storm water.

Outfall 003 – Intake Screen Backwash

This outfall consists of wastewater from the intake screen backwash. This outfall is considered to be a non-process wastestream as it is a return of water from Coffeen Lake. Screened Coffeen Lake water is used to wash traveling screens at the intake at periodic intervals. Note that the discharge of collected debris is removed via a trash basket prior to discharge of the water.

Outfalls 008-016 – Storm Water Runoff from Rail Spur

These outfalls receive storm water from various drainage areas, including the Station rail spur. Discharge is to Coffeen Lake.

Outfall 018 - Storm Water Associated with the Ash Landfill

This outfall is the overflow of the treatment pond that receives storm water from the Station coal combustion byproduct landfill and surrounding area. The treatment pond is designed to provide treatment for a >100year, 24-hour precipitation event. Discharge is to Coffeen Lake.

Attachment B Description of Other Discharges

De-icing Line

The Coffeen Power Station has a point at which water could be returned to Coffeen Lake that is not designated as an outfall. This point is associated with the plant intake structure. During winter months (as ambient temperature may dictate), a portion of the non-contact cooling water from the Station condensers is diverted through the deicing line and discharged at the face of the intake structure to prevent ice formation on the intake screens and trash racks. When this system is operated, intake circulating water flow forces the heated deicing water directly into the intake structure. Note that the combined intake circulating water flow and deicing line flows would enter the condensers and be discharged via the Station cooling water discharge flume and Outfalls 001, 020, 021 and/or 022.

Gypsum Management Facility

The Coffeen Power Station employs two impoundments for management of gypsum material from the wet flue gas desulfurization (WFGD) system. These two impoundments, the "Gypsum Stack" and "Reclaim Pond", collectively comprise the Gypsum Management Facility (GMF). Gypsum slurry from the WFGD is directed to the Gypsum Stack where the gypsum separates from the liquid component. Decant water flows to the Reclaim Pond which also acts as a surge storage volume for ultimate reuse in the WFGD system. Operation of the no-discharge GMF is governed via Water Pollution Control Permit 2008-EA-4661. Dam safety regulations dictate that the GMF design incorporate an engineered overflow structure in the Reclaim Pond to maintain integrity of the GMF during extreme conditions.

R 191

Attachment C Reapplication Sampling and Analysis

Analysis and Flow Data

This section describes the source of data listed in Forms 2C, 2E, and 2F, enclosed with this NPDES permit reapplication.

- Data from the special sampling project described below is listed in the "Maximum Daily Value" columns. Where applicable, the flows monitored during the sampling period are shown here and used to calculate mass discharges under this heading.
- Values listed under the headings "Maximum 30 Day Value" and "Long Term Average Value" were compiled from data required by the existing NPDES permit during the March 2011 February 2012 period. Mass discharges under these headings were calculated using the appropriate long-term average flow rates. Rounding of calculations was performed in accordance with Standard Methods, 21st Edition.
- "Intake" columns list data collected from a composite sample obtained from Coffeen Lake.

Sampling and Analysis for this Reapplication

A series of water samples were collected by Ameren Energy Generating Company employees as follows:

Outfall or Source	Date Sampled
Outfalls 008, 009, 013, 018	March 2, 2012
Outfalls C01, 002, Coffeen Lake	March 6, 2012
Outfall 016	March 8, 2012
Outfalls 020, A01, B01, D01	March 14, 2012

Samples were obtained on April 23, 2012 for those non-stormwater locations requiring semi-volatile organic and pesticide analyses.

Composite samples were not required for Outfall 002, as the retention time exceeds 24 hours (per 40 CFR, Part 122.21 (g) (7)). A single grab sample was obtained for Outfall 002.

Analyses of Outfalls 020, A01, B01, C01, and D01 samples consisted of 4 individual grabs (for non-compositing parameters: pH, oil & grease, total residual chlorine, and temperature). Composite samples consisted of at least 8 flow proportional aliquots obtained during the 24-hour operation of the facility during the sampling event.

Sampling and analyses for storm water outfalls 008, 009, 013, 016, and 018 were conducted during the first three hours of discharge from a qualified rain event. Analyses were performed on the "first flush" and flow-weighted composite samples. A flow-weighted average oil & grease component was determined via analysis of individual

grab samples obtained during the compositing period. The minimum and maximum listed pH values are from samples obtained during the compositing period.

Outfall	Forms Submitted	Substituted Outfall
001	2C *	020
020	2C *	
021	2C *	020
022	2C *	020
A01	2C *	
B01	2C *	
C01	2C *	
D01	2E	
E01	2C *	C01
F01	None	
G01	2C *	B01
H01	2F	
101	2F	
002	2C *	
003	2E	Coffeen Lake
008	2F	
009	2F	
010	2F	009
011	2F	009
012	2F	009
013	2F	
014	2F	013
015	2F	013
016	2F	
018	2F	

The following effluent constituents were substituted for various outfalls, per prior approval by the Agency:

* Form 2C submitted without analysis for "radioactivity"

Data provided for Outfalls H01 and I01 is from previous sampling events intended to characterize a discharge that were obtained during a "simulated" event. These two outfalls are for management of storm water from the Closed Ash Pond 2 during maintenance activities that would necessitate strategic cutting of the berm structures.

No samples of Outfall F01 were obtained as there is insufficient flow to characterize the effluent quality.

Sampling was not performed during storm events for Outfalls 001, 020, 021, 022, C01, E01, 001, and 002 per prior agreement with the Agency. The IEPA has determined that treatment of storm water in Outfall 002 constitutes BAT/BCT. As storm water is a minor constituent of the influent flow to these outfalls, sampling during storm events was not necessary.

A series of grab samples representative of Coffeen Lake was obtained and is used for the "intake" constituents listed on Form 2C.

Following on-site analysis of temperature, pH, and total residual chlorine by Coffeen Power Station staff; samples were preserved and subsequently analyzed in accordance with 40 CFR Part 136. A contract laboratory, PDC Laboratories Incorporated, conducted the remaining analyses except for Fecal Coliforms which was analyzed by Prairie Analytical Systems Incorporated, and Mercury which was analyzed by Microbac Laboratories Incorporated.

Station electrical generation during each of the process discharge sampling events was as follows:

Sample Date	MWH, total	% Plant Capacity
March 2, 2012	5458	23.9
March 6, 2012	0	0
March 14, 2012	0	0

Note: MWH = Megawatt Hours

R 194

, .

Attachment D Chemical Usage

Commercial chemical products used at the Coffeen Power Station can be categorized in three categories of usage, as they relate to wastewater discharges.

Bulk Usage

This is a group of chemicals that are used in plant systems for chemical treatment at some regular rate or interval. Table 1 lists these additives with pertinent data including approximate quantity stored on site, annual rate of use of the chemical, and the outfalls from which each is discharged.

Laboratory Reagents

This group consists of chemicals stored and used in the plant laboratory. The main characteristic of this group is the low relative usage quantity. At the request of the Agency, Ameren Energy Generating Company will provide an inventory of these chemicals.

Other Chemical Products

This grouping includes other chemical compounds, which may be discharged and are not included in the previous two groups.

Various solvents are sparingly used for equipment maintenance and/or lubrication. These waste solvents are disposed of in accordance with waste management rules and regulations. Some of these solvents may contain the following volatile compounds:

Chemical	CAS Number
Dichlorodifluoromethane	75-71-8
Toluene	108-88-3
Tetrachloroethane	127-18-4
Naphtha	8080-30-6
Methyl Ethyl Ketone	1338-23-4

Other chemical products, which may be discharged, include other miscellaneous maintenance and household cleaning products. Ameren Energy Generating Company will provide an inventory of these, at the Agency's request.

Freeze conditioning agents may be applied to coal (at the point of shipment) during severe winter weather. These agents typically consist of various mixtures of ethylene glycol, diethylene glycol, propylene glycol, calcium chloride, magnesium chloride and sodium chloride. When used, freeze-conditioning agents are applied at a rate of approximately 2 pints per ton of coal. Freeze conditioning agents may also be used at the coal receiving area located in the coal handling system at Coffeen Power Station. Freeze conditioning agents are applied as necessary during severe winter conditions. As

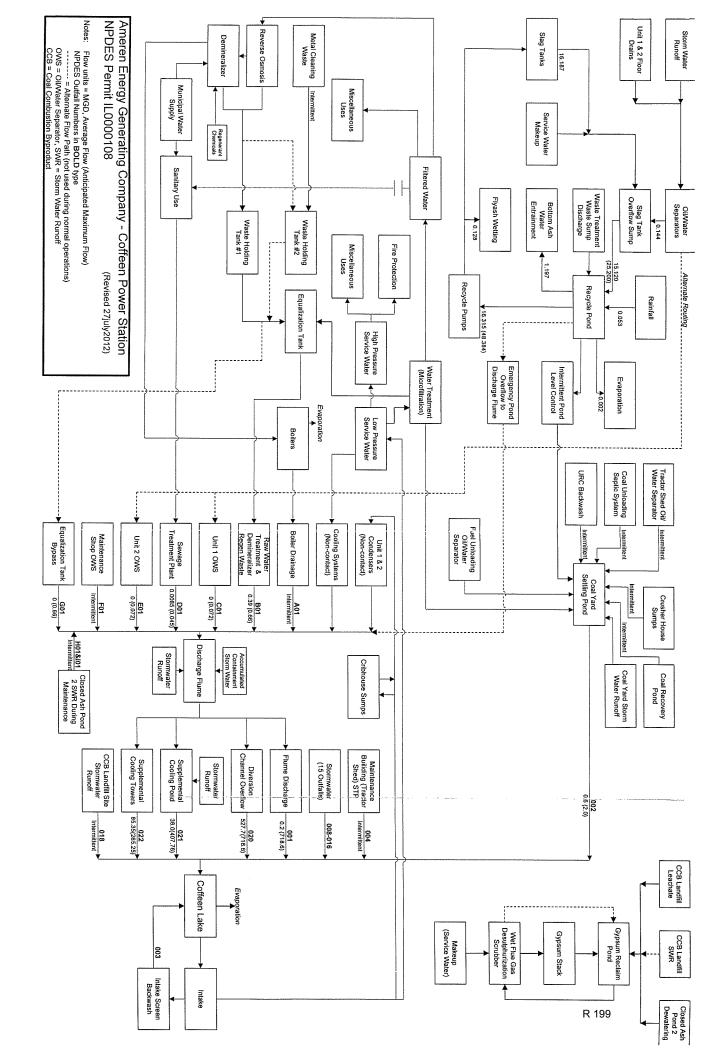
9

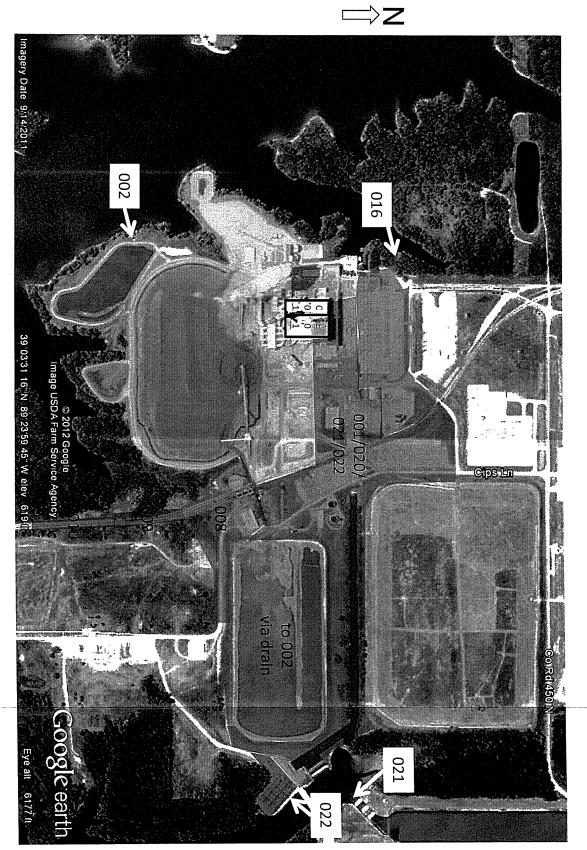
explained in Attachment J, coal pile runoff is routed to the Coal Yard Settling Pond (Outfall 002).

Dust suppression agents may also be applied to coal. The Coffeen Power Station currently utilizes two Benetech products: BT-415 and BT100F2. A small amount of these products may be discharged from the Coal Yard Settling Pond, Outfall 002.

Coffeen Power Station boilers are chemically cleaned, approximately every ten years. The spent chemical cleaning solutions are not discharged but are thermally treated at the plant by injecting them into an operating boiler, as permitted by the Station Boiler Operating Permit. Thermally treating these cleaning chemicals is the preferred management method. Evaporation of the chemical cleaning wastewater vaporizes the aqueous fraction and would destroy any residual organic cleaning agent. Research was conducted by the Electric Power Research Institute (EPRI) on discharges from utility boilers during thermal treatment of these wastestreams. EPRI's analysis concluded that emissions of most metal compounds from the cleaning wastes were insignificant compared to the normal plant emissions. In fact, emissions associated with boiler cleaning waste evaporation were small compared to the normal fluctuations in coal composition and ash content. Alternatively, boiler chemical cleaning wastewater rinses may be placed on an active portion of the coal pile, as provided in the current NPDES permit.

R 196


Table 1 – Bulk Chemical Usage


1.	Ammonium Hydroxide (30%)
	Maximum quantity on site: 7,000 gallons.
	Used as a boiler water treatment chemical.
	Usage: 223,860 pounds/year. Discharged to the boiler draining wastewater (Outfall A01).
2.	Sodium Hypochlorite (10% w/v)
	Maximum quantity on site: 300 gallons.
	Used as a water treatment chemical.
	Usage: 2,090 pounds/year.
	Discharged to Outfalls B01 or alternatively G01.
3.	Sodium Hydroxide (50% solution)
	Maximum quantity on site: 15,000 gallons.
	Used for regeneration of the Station demineralizers.
	Usage: 380,000 pounds/year.
	Discharged to Outfall B01 or alternatively G01.
4.	Sulfuric Acid (93%)
	Movimum quantity on eiter 04 400 moved
	Maximum quantity on site: 84,420 pounds. Used to regenerate the Station demineralizers and as a water treatment
	chemical.
	Usage: 450,000 pounds/year.
	Discharged to Outfall B01 or alternatively G01.
5.	Chlorine gas
	Maximum quantity on aitas 20,000 nounda
	Maximum quantity on site: 32,000 pounds. Used as a biocide for the main condensers.
	Usage: 112,000 pounds/year.
	Discharged to the condenser cooling water flume (Outfalls
	001/020/021/022).
6.	Citric acid
	Movimum quantity on eiter 000 mellons
	Maximum quantity on site: 600 gallons. Used as a water treatment chemical.
	Usage: 400 gallons/year.
	Discharged to Outfall 002.
7.	Sodium bisulfite
	Maximum quantity on site: 600 gallons.
	Used as a water treatment chemical.
	Usage: 400 gallons/year.
	Discharged to Outfall B01 or alternatively G01.

11

8.	Antiscalant
	Maximum quantity on site: 600 gallons. Used as a water treatment chemical. Usage: 1,400 gallons/year. Discharged to Outfall B01 or alternatively G01.
9.	Corrosion inhibitor (GEBetz Corrshield or equivalent)
	Maximum quantity on site: 500 gallons. Used as a corrosion inhibitor in the closed bearing cooling water system for various Station components. Usage: 11,200 pounds/year. Discharged to the Recycle Pond.
10.	Surfactants:
	Used as dust suppression agents for coal.
	Benetech BT-415 (or equivalent) Maximum quantity on site: 6,000 gallons Estimated Usage: 35,000 gallons/year
	Benetech BT-100F2 (or equivalent) Maximum quantity on site: 12,000 gallons Estimated Usage: 76,000 gallons/year
	Although most of the product would be consumed during combustion in the Station boilers, storm water runoff may cause residual surfactants to be discharged to the coal yard settling pond (Outfall 002).

.

Coffeen Power Station NPDES Permit IL0000108 – Map SW1 (approximate, revised 2012july25)

Primary Herbicide Application Areas (approximate, revised July 27, 2012) Coffeen Power Station NPDES Permit IL0000108 – Map SW2

Attachment E CWA Section 311 and CERCLA (Superfund) Reporting Exemptions

The chemicals listed below are used in water treatment processes in amounts exceeding their "reportable quantities" under 40 CFR Part 117.

Chemical	Average Usage (lbs/day)	Reportable Quantity (lbs)
Sodium hydroxide	1,050	1,000
Sulfuric acid	1,250	1,000

Ameren Energy Generating Company requests exclusion under the NPDES exemptions from Section 311 and Superfund reporting for these two compounds and all others that are, as reported in this application, present in continuous or anticipated intermittent discharges. The discharge of sulfuric acid and sodium hydroxide listed above is through the cooling water discharge flume (Outfalls 001, 020, 021, and/or 021). Monitoring for pH is performed in the cooling water discharge flume (specifically at Outfall 021). These and the other discharges for which exclusion is requested are exempt from section 311 liability by 40 CFR §117.12(a)(1) if they are in compliance with the permit and by §117.12(a)(2) or (3) if they are not. Discharges that are excluded from Section 311 are also excluded from Superfund. Any discharges other than those resulting from on-site spills would either result from circumstances identified in this application (see §117.12(c)) or would be a continuous or anticipated intermittent discharge originating within the operating or treatment systems at the plant (see §117.12(d)). These discharges are therefore excluded from Section 311 and Superfund reporting and liability.

Note that even though the daily use of these chemicals exceeds the Reportable Quantity, the discharge would not comprise the total amount used. This is due to acid-base and other reactions, which occur during the use of these chemicals.

Attachment F Thermal Limitations, Section 316(a)

The Coffeen Power Station cooling water discharge and the thermal plume it creates was initially studied extensively during the 1970s. The discharge is an outlet to Coffeen Lake. The Illinois Pollution Control Board approved Coffeen Power Station's 316(a) demonstration on November 16, 1978 via Order Number 77-158. This demonstration established site specific standards for thermal discharges to Coffeen Lake per 35 IAC 302.211(j)(5).

The Station constructed a supplemental perched cooling pond in 2000 and supplemental cooling towers in 2002 to further reduce thermal loading to the lake. Continuous thermal monitoring of the condenser cooling water flume is conducted at the edge of a 26-acre mixing zone. In light of the addition of supplemental cooling systems and the absence of any adverse environmental impacts, we request that the Agency reaffirm the previous 316(a) demonstration.

We believe that this request is wholly substantiated by the Illinois Pollution Control Board in Order 2009-038 which granted a site-specific rule change for the months of May and October for thermal discharges on Coffeen Lake.

IPCB 2009-038 Thermal Demonstration

It should be noted that Coffeen Lake is very unique in that there is a rather exhaustive fishery database. Comprehensive fish studies are available for the 1978-1981, 1997-2006, and 2010-2011 periods, in addition to those periodically conducted by the Illinois Department of Natural Resources. Fishery studies continue during 2012 in accordance with the IPCB 2009-038 ruling.

Coffeen Lake continues to support an abundant and diverse wildlife including muskrat, turtles, and heron. It also supports a very robust fishery, comprised of 22 species of fish, and is well known as the home of numerous competitive sport-fishing tournaments.

Ameren demonstrated to the Illinois Pollution Control Board (IPCB) that modified thermal discharges to Coffeen Lake would be "environmentally acceptable and within the intent of the Act". This demonstration that resulted in IPCB Order 2009-038 consisted of several components including a retrospective and prospective assessment of the three Representative Important Species (largemouth bass, bluegill, and channel catfish), Total Phosphorus, Methylmercury, and Dissolved Oxygen.

The selection of Representative Important Species (RIS) is performed after evaluation of those fish that are (1) are important due to their societal or ecological value, and (2) can represent those species which cannot be studied to the same extent. The selected RIS are primary components of the Coffeen Lake recreational fishery. These RIS are objectives of the Illinois Department of Conservation (IDOC) Lake Management Plan for Coffeen Lake. The IDOC states that the health and abundance of largemouth bass is directly related to the quality of the existing Coffeen Lake fish population – including forage fish necessary for predators such as largemouth bass.

The retrospective RIS assessment examined Coffeen Lake fishery studies conducted during the 1997-2006 period. This retrospective survey provides the strongest evidence of the long-term effects of water temperatures as it integrates all aspects of the thermal environment on the life cycle for the fish species and the lower trophic levels in the lake such as phytoplankton, epiphyton, macrophytes, zooplankton, and benthos. The retrospective survey concluded that the survival and growth of the early life stages, the eggs and the larvae, are improved by the stable warmer temperatures that occur in the late winter and early spring, and are improved by the prolonged growth season that results from the thermal discharge to the lake.

The prospective (or predictive) assessment evaluated any potential impacts that the proposed Coffeen Lake thermal standards would have on the RIS. The prospective review concluded that the proposed thermal standards would more realistically reflect the natural environment where temperatures change more gradually than with the abrupt changes inherit in the standards per IPCB Order 77-158.

The IPCB concurred with Ameren's expert testimony the requested thermal standards would not have any detrimental impact to Coffeen Lake's capability to support shellfish, fish, wildlife, and recreational uses, as required by Sections 106.202(b)(1)(A) and 302.2011(j)(3)(A).

The IPCB Order 2009-038 required Ameren to conduct additional fish studies for Coffeen Lake annually for three years beginning in 2010. The report conducted for the 2011 season (April – October) concluded that largemouth bass were in excellent condition, bluegill were in average condition, black and white crappie were in excellent condition, redear sunfish were in average condition, and channel catfish were in average condition.

Attachment G Intake Structure Requirements, Section 316(b)

The Agency approved the Coffeen Power Station 316(b) final report on April 27, 1982, effectively determining that the intake structure reflects "best technology available" in compliance with Section 316(b) of the Clean Water Act.

The intake structure continues to operate as described in the approved final report. There have been no significant physical changes to the intake pumps, the traveling screens, or other relevant components. Therefore, Ameren Energy Generating Company requests renewal of the "best available technology" approval under 316(b).

316(b) Phase II Actions

Several actions were taken in accordance with the currently suspended USEPA 316(b) Phase II rulemaking. A "Proposal for Information Collection" was submitted to the Illinois Environmental Protection Agency for conducting an updated assessment of impingement mortality at the Coffeen Power Station cooling water intake structure. This new data collected served to reaffirm historic impingement mortality studies. The 2006-2007 study exhibited extremely low impingement rates with an estimated annual total impingement of 1,277 fish. The 2006-2007 further concluded that of the 86 total impinged fish collected, about ½ of the organisms were gizzard and threadfin shad. The 1979-1980 study concluded that nearly 92.3% of the organisms collected were gizzard shad. A summary of the 2006-2007 data collection effort, including estimated annual impingement, is provided in Table G1.

The Phase II rulemaking also required submittal of a "Comprehensive Demonstration Study" that would provide the measures to be used for compliance with the currently suspended Phase II rulemaking performance standards. These measures were to include an appropriate range of technologies, operational, and /or restoration components; subject to cost-cost and/or cost-benefit criteria and the potential procurement of a site-specific standard, in accordance with the Phase II rulemaking. Due to the suspension of the Phase II rulemaking, the impingement mortality study was the only task completed as all other activities associated with the Comprehensive Demonstration Study were terminated.

Table G1Coffeen Station 2006-2007 Impingement Data

Species	Total Number Collected	%	Total Weight Collected (grams)	%	Estimated Annual Number
Threadfin shad	33	38.4	41	0.6	450
Bluegill	22	25.6	272	4.3	385
Channel catfish	12	14.0	945	14.9	165
Gizzard shad	10	11.6	689	10.9	128
Largemouth bass	4	4.6	1,415	22.4	50
Striped bass	3	3.5	2,768	43.8	43
White crappie	1	1.2	73	1.9	14
Yellow bass	. 1	1.2	73	1.2	41
TOTAL	86		6,324		1,277

Attachment H Environmental Projects

The following is a summary of current projects at Coffeen Power Station, which have an environmental component. Federal, State, or local authorities are requiring none of the projects described. Rather, they are being supplied as optional information as noted in Form C, Item 2.60 B.

Beneficial Ash Usage

Coffeen Power Station generates approximately 110,000 tons of fly ash and 180,000 tons of bottom ash each year. Fly ash is conveyed dry to silos and used beneficially in mine reclamation or is landfilled. Bottom ash is used beneficially as a feed stock for use as asphalt shingle aggregate or blasting grit. It is also used as a winter traction material or temporarily stored on site until recovered for beneficial use projects. Water Pollution Control Permit 2003-EB-2573 was issued by the Agency, authorizing the construction and operation of facilities to allow sluicing of bottom ash to the recycle pond for more efficient beneficial use recovery.

We will continue to pursue existing and additional beneficial uses for fly ash and bottom ash, including structural fill projects.

Coffeen Lake

Coffeen Lake is comprised of 1,100 acres at a pool elevation of 590.0 feet (MSL). The lake was constructed to provide cooling water to support the Coffeen Power Station.

Coffeen Lake and its shoreline are currently leased to the Illinois Department of Natural Resources (IDNR) as a day use conservation area. Coffeen Lake provides a diverse fishery that supports species such as largemouth bass, white bass, channel catfish, crappie, and gizzard shad.

Coffeen Lake and surrounding land provides habitat for other aquatic and terrestrial organisms such as birds, deer, coyotes, and turtles. Areas are available for hunting, picnics, and hiking.

Attachment I Macroinvertebrate & Biofouling Control

Coffeen Power Station has a monitoring program to detect both biofouling formation and the settlement and growth of macroinvertebrates, such as zebra mussels, within systems vulnerable to fouling by these organisms. Chlorine is used to control the formation of biofoulants, as necessary.

As part of this NPDES Permit reapplication, the Coffeen Power Station is requesting continued authorization to treat circulating and service water systems with the following type of molluscicide:

• GE Betz ClamTrol CT-2 (Spectrus CT-1300), CT-4, or similar molluscicide.

Treatment using a molluscicide such as Spectrus CT-1300 or CT-4 will typically consist of isolating the targeted intake cells and shutting off the respective intake pumps. The molluscicide is then added to the water in the intake cell to achieve the targeted dosage (5.0mg/L for Spectrus CT-1300). This target concentration is maintained for a period between six and nine hours, adding product as necessary, while the cell remains isolated. The residual biocide will be detoxified with a bentonite clay product (such as GE Betz DTG), at an approximate ratio of 6.3:1 bentonite to Spectrus CT-1300. The detoxicant would be added to each point where the residual biocide could be directly discharged to Coffeen Lake. When treatment is complete, the intake cell and associated pumps would be restored to service.

When necessary, auxiliary water distribution systems (low and high pressure raw water, and service water) would also treated to avoid pipe pluggage. These systems would be treated by pumping the molluscicide into the suction of the low and high pressure raw water pumps and maintaining the target dosage (see above) for a period between six and nine hours. A detoxicant would be added to each point where the residual biocide could be directly discharged to Coffeen Lake.

WET (Whole Effluent Toxicity) tests during these operations at our other plants have demonstrated that the discharges are non-toxic.

If monitoring indicates that further controls are necessary to be implemented at the Coffeen Power Station for molluscicide management, we will provide appropriate notice, consistent with permit standard conditions and applicable regulations.

Attachment J Activities, Materials and Management Practices with the Potential to Impact Storm Water Quality

Significant Materials

Twenty-three (23) significant materials have been identified at the Coffeen Power Station as being in contact with storm water currently, or in the last three years. Each significant material is numbered and described below. Note that Chemical usage is also described in Attachment D.

- 1. <u>Coal</u> is located outside, in an uncovered pile. Storm water runoff from the coal pile is routed to the coal yard settling pond (Outfall 002) for treatment. The coal is delivered by rail and is unloaded at the coal receiving area.
- 2. Numerous <u>oil filled transformers</u> are located on site. The oil is used for cooling and insulation. They can be grouped generally by size; each group is described below.

There are 27 large power transformers; these are primarily the main power, auxiliary, and other major Station transformers. All of these are located within excavated areas containing a two-foot layer of crushed stone to retain any spillage or engineered concrete containment structures. The quantities of oil in each are as follows:

Unit 1 Main Power Transformer	13,500 gallons		
Unit 2 Main Power Transformer	18,100 gallons		
Unit 1 Reserve Transformer	5,170 gallons		
Unit 2 Reserve Transformer	15,200 gallons		
Unit 1 Main Auxiliary Transformers (2)	4,184 gallons, total		
Unit 2 Main Auxiliary Transformers (2)	5,120 gallons, total		
Locker Room Supply Transformer	240 gallons		
Tractor Shed Transformer	471 gallons		
Slag Tank Overflow Pump House			
Transformers (2)	209 gallons, total		
Coal Unloader Transformers (3)	991 gallons, total		
East Coffeen Substation Transformer	2,925 gallons		
Southwest Coffeen Substation Transformer	1,774 gallons		
Cooling Pond/Tower Main Transformer	2,472 gallons		
Cooling Tower Fan Transformers (3)	900 gallons, total		
Station Service Transformers (4)	15,300 gallons, total		
Reserve Auxiliary Transformers (2)	35,840 gallons, total		

There are several transformers associated with the electrostatic precipitators. They contain a total of 3,865 gallons of transformer oil.

A group of smaller transformers (of varying size) are located primarily within the plant substation and switchyard.

- 3. <u>Bottom ash</u> is sluiced to the recycle pond prior to beneficial use. Storm water runoff from this area would primarily be contributory to Outfall 002. Bottom ash may also be placed in the on-site landfill as dictated by plant operations.
- 4. <u>Fly ash</u> is dry-handled for beneficial use, mine reclamation, or disposal in the on-site landfill.
- 5. <u>#2 Fuel oil</u> for boiler ignition is stored in a two above ground tanks, with a total capacity of 200,000 gallons and two day tanks with a maximum capacity of 45,000 gallons. The main tanks are located within a concrete secondary containment and the day tanks are located within a dike. Containment areas are designed to contain the entire contents of the respective tank(s), including incidental precipitation. Manual attended draining of these containments is conducted as necessary. Fuel oil is received by truck and the truck driver and a qualified Coffeen employee are present during each unloading event.
- 6. <u>Diesel fuel oil</u> for mobile equipment and other purposes is stored in an above ground tank with a capacity of 10,000 gallons. The tank is double-walled with integral containment/leak detection and situated inside a concrete secondary containment. Manual attended draining of the secondary containment area to an oil/water separator occurs as necessary. The truck driver and a qualified Coffeen employee are present during every unloading.
- <u>Used oil</u>, including non-electrical and electrical waste oil is stored in three tanks. Two 3,000 gallon double walled tanks are located within a concrete secondary containment area that will contain the entire contents of the tank, including incidental precipitation. Manual attended draining of this containment area through the tractor shed oil/water separator occurs as necessary.
- 8. <u>Unleaded gasoline</u> is stored in an above ground double-walled tank with a capacity of 500 gallons.
- 9. Periodically, the boilers are cleaned with a solution of <u>ethylene diamine tetraacetic</u> <u>acid (EDTA)</u>. Approximately 9,000 gallons of the chemical is brought on site in a tank trailer. The <u>boiler cleaning wastewater</u> is stored in an on-site tank, until it is preferentially thermally treated in an operating boiler.
- 10. <u>Sodium hydroxide (50%)</u> is stored in a 15,000 gallon above ground tank. There is no secondary containment for this tank. If released to the environment, the tank contents would soak into nearby rock and soil. The truck driver and a qualified Coffeen employee are present during every unloading.
- 11. <u>Sulfuric acid (93%)</u> is stored in a 10,000 gallon above ground tank. There is secondary containment for this tank, including incidental precipitation. Sulfuric acid is loaded directly into the tank from a tanker truck. The truck driver and a qualified Coffeen employee are present during every unloading. Accumulated storm water is drained from this containment as necessary.
- 12. <u>Hydrogen</u> gas is stored in 12 containers with a capacity of 51 ft³ in each (612 ft³ total). The hydrogen gas is used for cooling the Station generators.

- 13. <u>Carbon dioxide</u> gas is stored in a tank with a 10 ton capacity and is used for purging the Station generators.
- 14. <u>Nitrogen</u> gas is stored in a 1,600 gallon tank. The nitrogen gas may be used to blanket the feedwater heaters and other boiler components during extended non-operating periods.
- 15. Two <u>coal dust suppression products</u> (Benetech BT-415 and BT-100F2) are used onsite in separate tanks or totes located at the dumper house, transfer house, sample house, and the tripper room.
- 16. Winter Storm "Ice Melt" containing <u>potassium chloride</u> is stored at several Station areas during winter months. It is spread on roadways, sidewalks and parking lots for deicing, as needed.
- 17. <u>Anhydrous ammonia</u> is stored on-site in two 50,000 gallon tanks and is used for flue gas emission control.
- 18. <u>Miscellaneous piping and plant equipment</u> is stored on the Station site in designated areas.
- 19. <u>Limestone</u> is stored outside, in an uncovered pile. Storm water runoff from the limestone pile is routed to a HDPE-lined impoundment for use by the wet flue gas desulfurization system or alternatively discharged to the coal yard settling pond (Outfall 002).
- 20. <u>Molten sulfur</u> is stored in an 80 ton tank and was used for coal combustion; however this system (and tank) is abandoned in place.
- 21. <u>Ammonium hydroxide</u> (30%) is stored in two tanks with a total capacity of 7,000 gallons and is used for boiler water treatment.
- 22. <u>Ethylene glycol</u> is stored in a 500-gallon tote and is used as an anti-slip agent on coal belt conveyors. A maximum of 27,500 gallons of a 50% solution is used as a heat exchange medium in the air preheaters.
- 23. As necessary, a covered metal dumpster is used as a temporary collection point for <u>asbestos</u>. When asbestos is removed from plant equipment, it is properly bagged per 40CFR61 and stored in the dumpster until it is transported off site for disposal.
- 24. <u>Gypsum</u> from the wet flue gas desulfurization system (WFGD) is located in a HDPE lined impoundment. Decant water is reclaimed in an adjacent HDPE impoundment and reused in the WFGD.

Accumulated storm water may be discharged from other diked or containment areas. As appropriate, the accumulated storm water is visually examined for any oil sheens and/or tested for pH, prior to discharge.

Hazardous Wastes

Coffeen Power Station is classified as a small quantity hazardous waste generator. The accumulated waste is shipped off site in accordance with federal regulations.

Bulk Materials Loading Areas

Coal is received at the Station by rail in unit trains, typically consisting of 100 highcapacity bottom dump cars. The unit train slowly moves across a track hopper into which the coal is unloaded. In the receiving system, a series of conveyors is used to transfer the coal from the track hopper, via the stacker tower, onto a live storage pile. A long-term coal storage pile is adjacent to the live storage pile. Dozers and scrapers transport the coal between the two piles. The reclaim system is a series of feeders and conveyors, which transport coal from the live storage pile to a surge bin located inside the Station.

Dry fly ash is conveyed to a silo for loading into trucks for beneficial reuse or disposal in a landfill.

Bottom ash may be stored for beneficial use or conveyed to an on-site processing facility for beneficial use.

Limestone is received by truck and managed in a live storage pile via heavy equipment (such as dozers and/or scrapers) for use by the wet flue gas desulfurization system.

Outdoor Vehicle Maintenance and Cleaning Areas

The Coffeen Power Station has one area where outdoor vehicle maintenance and cleaning activities routinely occur. The coal equipment garage is located near the coal storage site. Station equipment, such as coal handling equipment is routinely washed in this area. Fork trucks, cranes, and other mobile miscellaneous equipment may also be cleaned at the Station. All washing is performed using only water with no detergents. Runoff from areas where washing would take place is directed to the coal yard settling pond (Outfall 002) via yard drains.

Fertilizers, Pesticides, Herbicides and Soil Conditioners

Currently, the following liquid herbicides are spray applied to various areas in and
around the site by a licensed outside contractor:

Herbicide	CAS Number
Roundup	1071-83-6
Diuron	330-54-1
Krovar	314-40-9 & 330-54-1
SEE 2-4D	94-75-7
Embark	53780-34-0
Arsenal	81334-34-1

No other products are currently used for weed control. Also, no fertilizers, pesticides, or soil conditioners are applied.

In conformance with the "General NPDES Permit for Pesticide Application Point Source Discharges", we are providing the following additional information:

- The licensed applicator applies the selected herbicide(s) using equipment that functions properly.
- Herbicide application is focused on areas such as the electrical switchyard, the Station rail spur, and other selected areas. Areas containing water that may be contributory to Coffeen Lake are avoided as much as practicable.
- Selected areas with standing water may be treated with a larvicide to preclude nuisance mosquitoes that may affect the health of Station employees.
- All applications are performed in accordance with label directions and FIFRA requirements.

All appropriate records required by the General NPDES Permit for Pesticide Application Point Source Discharges are retained at the Station site and available for Agency inspection upon request. It is our position that no additional permit requirements are necessary in the reissued NPDES permit for continued application of any herbicides or pesticides.

Management Practices

The Coffeen Power Station relies on numerous routine management practices to 1) help prevent contamination of storm water runoff and 2) ensure appropriate and timely responses to spills and other unanticipated events.

The Station has a Spill Prevention, Control and Countermeasure (SPCC) Plan. It describes various management practices to minimize oil spills/releases and their contact with storm water runoff. The SPCC Plan also designates a Station spill coordinator who is available to provide technical assistance and advice related to spill prevention, clean-up, waste management, and reporting.

Written emergency procedures are also in place to provide guidance in addressing chemical spills and releases. Designated Station employees receive periodic training to instruct them on the proper response to such incidents.

Preventive maintenance activities include routine inspections of above ground storage tanks, valves, pipelines, flange joints, and associated equipment. Station staff conducts many of these daily, while making their rounds.

Routine inspections for storm water concerns are periodically performed. An annual formal inspection conducted by Station and Corporate staff serves to augment the periodic inspections. Some of the best management practices (BMPs) that are in place include:

- Periodic inspections of Station drainage areas, to initiate maintenance as may be necessary to prevent the creation of storm water outfalls;
- Discriminant use of herbicides to avoid complete loss of vegetation and excessive erosion within drainage areas;
- Maintenance, regrading, and/or revegetation of Station road surfaces, drainage swales, and perimeter yards to avoid excessive erosion and/or creation of new point source discharges of storm water;
- Case-by-case evaluation of non-routine projects within drainage areas, to prevent unauthorized discharges, assess the potential for any storm water outfalls, and implement appropriate protective measures.

Attachment K Significant Leaks or Spills

.

Based on a review of our records, no spill has occurred in the last three years at the Coffeen Power Station that would be considered "significant" per the regulatory criteria.

Attachment L Reissued Permit Revision Requests

Based on a review of the current Coffeen Power Station NPDES permit, recently submitted analytical data, and facility needs, we respectfully request continuing Agency authorization of the following:

Temporary Supplemental Cooling Tower Authorization

We are requesting that the Agency continue to provide a provision in the reissued permit to authorize the construction and operation of temporary supplemental cooling towers for attenuation of the condenser cooling water discharge flume effluent temperature, as necessary to comply with the existing temperature limitations. We currently anticipate a maximum flow of 105,000 gpm (151.2 MGD) through temporary supplemental cooling towers that would serve to augment the existing permanent supplemental cooling and permanent supplemental cooling towers. The temporary supplemental cooling towers would potentially be similar in design to the "Aggreko Industrial Cooling Towers", as approved by the Agency in permit 2000-EA-0967.

The requested provision would serve to allow the expeditious deployment of additional cooling capacity as necessary. Rapid placement of temporary supplemental cooling towers would serve to minimize any thermal impacts on Coffeen Lake and meet electrical generation demand during periods of adverse unanticipated weather conditions.

Temporary pumps would draw water from the cooling water discharge flume, pass it through the temporary supplemental towers, and discharge via a combined header back into the flume. Operation of the temporary towers would not create any new outfalls.

Chemical Metal Cleaning Wastewater

The current Station practice is to evaporate chemical metal cleaning rinses in an operating boiler, as afforded by the facility air permits. However, we would like to retain the option to place chemical metal cleaning rinses on an active portion of the coal pile, as provided by the existing NPDES permit. Following is data from recent boiler chemical cleaning conducted at the Coffeen Power Station:

Analyte	Coffeen U1 10/28/1998	Coffeen U2 5/30/1996	
Arsenic, total	< 1 mg/L	< 1 mg/L	
Barium, total	< 0.5 mg/L	0.007 mg/L	
Cadmium, total	< 0.02 mg/L	< 0.02 mg/L	
Chromium, total	4.3 mg/L	3.02 mg/L	
Lead, total	< 0.5 mg/L	< 0.5 mg/L	
Selenium, total	< 0.7 mg/L	< 0.8 mg/L	
Silver, total	< 0.01 mg/L	< 0.02 mg/L	
Mercury, total	< 0.005 mg/L	< 0.003 mg/L	
Nickel, total	2 mg/L	0.6 mg/L	
Thallium, total	< 2 mg/L	0.4 mg/L	

	1021 North Grand Avenue East, P.O. Box 19276, Pat Quinn, G overnor	SPRINGFIELD, ILLINOIS 62794-9276 • (217) 782-3397 JOHN J. KIM, INTERIM DIRECTOR
	Memorandum	DECENVERDE
Date:	October 30, 2012	OCT 31 2012
To:	Shu-Mei Tsai	ILLINOIS ENVIRONMENTAL
From:	Bob Mosher RM	PROTECTION AGENCY BOW/WPC/PERMIT SECTION
Subject:	Ameren Coffeen Power Station Water Q NPDES No. IL0000108	uality Based Effluent Limit Evaluation Montgomery County

This facility discharges effluents from a variety of sources to Coffeen Lake. Monitoring data are available from Outfalls 002, 008 and 018 for water quality parameters for metals, chloride and sulfate. Coffeen Lake (segment code ROG) is listed as impaired on the draft 2010 Illinois Integrated Water Quality Report and Section 303(d) List for fish consumption and aesthetic quality uses. The cause given for fish consumption use impairment is mercury while the causes given for aesthetic quality use are aquatic plants, total phosphorus and total suspended solids. Aquatic life use is fully supported. In the draft 2012 Report, aesthetic quality use impairment is removed and the only remaining use impairment is fish consumption with cause given as mercury. A TMDL has been completed for Coffeen Lake. Coffeen Lake is not given an integrity rating in the 2008 Illinois Department of Natural Resources Publication *Integrating Multiple Taxa in a Biological Stream Rating System*. Coffeen Lake is not designated as an enhanced water pursuant to the dissolved oxygen water quality standard.

Outfall 002 (coal yard pond), Outfall 008 (stormwater from rail spur) and Outfall 018 (stormwater from ash landfill) have had data collected. All data is from the applicant. Values are given in mg/L except for mercury which is in ng/L. Hardness (174 mg/L) and chloride (28.4 mg/L) used to calculate the sulfate water quality standard were obtained from AWQMN Station OI-07, Shoal Creek 1.5 miles NW Panama.

Substance	Max.	No. of	Multiply	95%	302.208(g)	Further
	Eff.	Samples	by	Potential	or (h)	Analysis?
	Conc.				Standard	
Boron (002)	1.6	56	1.0	1.6	1.0	Yes
Manganese (002)	0.068	56	1.0	0.068	1.0	No RP*
Mercury* (002)	10	11	1.7	17	12	Yes
Boron (018)	0.083	16	1.5	0.125	1.0	No RP*
Chloride (018)	110	12	1.6	176	500	No RP*
Mercury* (018)	1.1	1	6.4	7.0	12	No RP*
Sulfate (018)	22	12	1.6	35	1426	No RP*
Mercury* (008)	5	10	1.7	8.5	12	No RP*

*The human health standard is given.

•••;

Further Analysis

The average of the 11 mercury samples from Outfall 002 is 3.9 ng/L. After applying the multiplier, the value is 6.6 ng/L, which is well below the water quality standard. No reasonable potential exists to exceed the human health water quality standard.

Boron in Outfall 002 exceeds the water quality standard. However, a mixing zone is recognized in the permit for boron. None of the 56 samples exceeded the permit limit of 1.8 mg/L.

Conclusions and Recommendations

None of the monitored parameters from any outfall has reasonable potential to exceed water quality standards. Water quality standards are changing for boron and manganese with a final rule expected from the Illinois Pollution Control Board early next year. Limits for boron will be unnecessary after the change. Even with the existing manganese water quality standard, no reasonable potential exists and the limit for Outfall 002 should be removed. If the reissuance of the permit may be delayed until after the Board changes the standards, boron should also be removed as a regulated parameter for Outfall 002. There is no longer a water quality standard for total dissolved solids. This limit should also be removed immediately from Outfall 002. All other references to TDS monitoring in the permit should be removed. There is no evidence that dissolved solids are high, so no sulfate or chloride limits are appropriate.

Outfalls 018 is to have stormwater monitored when discharges occur to Coffeen Lake. Outfall 018 shows no sign of having high concentrations of the monitored parameters. I suggest that this outfall, along with Outfall 002 have an annual monitoring condition that would include the metals and other substances (with the addition of chloride and sulfate) typically required of municipal effluents. Low concentrations of monitored substances justify the reduced frequency of monitoring. Likewise, the mercury monitoring for Outfall 008 could be reduced to annual given the lack of reasonable potential to exceed the mercury water quality standards.

I reviewed monitoring results for other outfalls included with the NPDES permit renewal application. There were no parameters that had concentrations exceeding water quality standards or which require further monitoring.

These recommendations reflect a water quality standards perspective only and should not be construed as indicative of all factors that must be taken into consideration by the permit writer.

cc: FOS Region 5 Manager Bill Ettinger